這道方程配方法解方程有些特珠。
分析:a-1≠0,a≠1,a≠0
解:原方程做如下變形:
[a^2(a-1)^2 a^3]/(a-1)^2=6
(a^4-2a^3 a^2 a^3)/(a-1)^2=6
(a^4-a^3 a^2)/(a-1)^2=6
a^4/(a-1)^2-(a^3-a^2)/(a-1)^2=6
[a^2/(a-1)]^2-a^2(a-1)/(a-1)^2=6
∴[a^2/(a-1)]^2-[a^2/(a-1)]-6=0
∴[a^2/(a-1)-3][a^2/(a-1) 2]=0
∴有a^2/(a-1)-3=0或a^2/(a-1) 2=0
當a^2/(a-1)-3=0時,a^2-3a 3=0,△<0,無實根
當a^2/(a-1) 2=0時,a^2 2a-2=0
a=-1 √3或a=-1-√3
∴原方程的解為:a1=-1 √3,a2=-1-√3
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!