符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌迹.
軌迹,包含兩個方面的問題:凡在軌迹上的點都符合給定的條件,這叫做軌迹的純粹性(也叫做必要性);
凡不在軌迹上的點都不符合給定的條件,也就是符合給定條件的點必在軌迹上,這叫做軌迹的完備性(也叫做充分性)。
【軌迹方程】就是與幾何軌迹對應的代數描述。
一、求動點的軌迹方程的基本步驟⒈建立适當的坐标系,設出動點M的坐标;
⒉寫出點M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗。
二、求動點的軌迹方程的常用方法:求軌迹方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。
⒈直譯法:直接将條件翻譯成等式,整理化簡後即得動點的軌迹方程,這種求軌迹方程的方法通常叫做直譯法。
⒉定義法:如果能夠确定動點的軌迹滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌迹方程的方法叫做定義法。
⒊相關點法:用動點Q的坐标x,y表示相關點P的坐标x0、y0,然後代入點P的坐标(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌迹方程,這種求軌迹方程的方法叫做相關點法。
⒋參數法:當動點坐标x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌迹方程,這種求軌迹方程的方法叫做參數法。
⒌交軌法:将兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌迹方程,這種求軌迹方程的方法叫做交軌法。
*直譯法:求動點軌迹方程的一般步驟
①建系——建立适當的坐标系;
②設點——設軌迹上的任一點P(x,y);
③列式——列出動點p所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等将其轉化為關于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌迹方程。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!