(一)圖形的認識,測量
量的計算
一、長度單位是用來測量物體的長度的。常用的長度單位有:千米、米、分米、厘米、毫米。
二、長度單位:
1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米1米=100厘米 1米=1000毫米
三、面積單位是用來測量物體的表面或平面圖形的大小的。常用面積單位:平方千米、公頃、平方米、平方分米、平方厘米。
四、測量和計算土地面積,通常用公頃作單位。邊長100米的正方形土地,面積是1公頃。
五、測量和計算大面積的土地,通常用平方千米作單位。邊長1000米的正方形土地,面積是1平方千米。
六、面積單位:(100)
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
七、體積單位是用來測量物體所占空間的大小的。常用的體積單位有:立方米、立方分米(升)、立方厘米(毫升)。
八、體積單位:(1000)
1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升
九、常用的質量單位有:噸、千克、克。
十、質量單位:
1噸=1000千克 1千克=1000克
十一、常用的時間單位有:
世紀、年、季度、月、旬、日、時、分、秒。
十二、時間單位:(60)
1世紀=100年 1年=12個月 1年=4個季度
1個季度=3個月 1個月=3旬 大月=31天
小月=30天 平年二月=28天 閏年二月=29天
1天=24小時 1小時=60分 1分=60秒
十三、高級單位的名數改寫成低級單位的名數應該乘以進率;低級單位的名數改寫成高級單位的名數應該除以進率。
十四、常用計量單位用字母表示:
千米:km 米:m 分米:dm 厘米:cm 毫米:mm 噸:t 千克:kg 克:g 升:l 毫升:ml
平面圖形【認識、周長、面積】
一、用直尺把兩點連接起來,就得到一條線段;把線段的一端無限延長,可以得到一條射線;把線段的兩端無限延長,可以得到一條直線。線段、射線都是直線的一部分。線段有兩個端點,長度是有限的;射線隻有一個端點,直線沒有端點,射線和直線都是無限長的。
二、從一點引出兩條射線,就組成了一個角。角的大小與兩邊叉開的大小有關,與邊的長短無關。角的大小的計量單位是(°)。
三、角的分類:小于90度的角是銳角;等于90度的角是直角;大于90度小于180度的角是鈍角;等于180度的角是平角;等于360度的角是周角。
四、相交成直角的兩條直線互相垂直;在同一平面不相交的兩條直線互相平行。
五、三角形是由三條線段圍成的圖形。圍成三角形的每條線段叫做三角形的邊,每兩條線段的交點叫做三角形的頂點。
六、三角形按角分,可以分為銳角三角形、直角三角形和鈍角三角形。 按邊分,可以分為等邊三角形、等腰三角形和任意三角形。
七、三角形的内角和等于180度。
八、在一個三角形中,任意兩邊之和大于第三邊。
九、在一個三角形中,最多隻有一個直角或最多隻有一個鈍角。
十、四邊形是由四條邊圍成的圖形。常見的特殊四邊形有:平行四邊形、長方形、正方形、梯形。
十一、圓是一種曲線圖形。圓上的任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。通過圓心并且兩端都在圓的線段叫做圓的直徑。
十二、有一些圖形,把它沿着一條直線對折,直線兩側的圖形能夠完全重合,這樣的圖形就是軸對稱圖形。這條直線叫做對稱軸。
十三、圍成一個圖形的所有邊長的總和就是這個圖形的周長。
十四、物體的表面或圍成的平面圖形的大小,叫做它們的面積。
十五、平面圖形的面積計算公式推導:
【1】平行四邊形面積公式的推導過程?
①把平行四邊形通過剪切、平移可以轉化成一個長方形。
②長方形的長等于平行四邊形的底,長方形的寬等于平行四邊形的高,長方形的面積等于平行四邊形的面積。
③因為:長方形面積=長×寬,所以:平行四邊形面積=底×高。即:S=ah。
【2】三角形面積公式的推導過程?
①用兩個完全一樣的三角形可以拼成一個平行四邊形。
②平行四邊形的底等于三角形的底,平行四邊形的高等于三角形的高,三角形面積等于和它等底等高的平行四邊形面積的一半
③因為:平行四邊形面積=底×高,所以:三角形面積=底×高÷2。 即:S=ah÷2。
【3】梯形面積公式的推導過程?
①用兩個完全一樣的梯形可以拼成一個平行四邊形。
②平行四邊形的底等于梯形的上底和下底的和,平行四邊形的高等于梯形的高,梯形面積等于平行四邊形面積的一半。
③因為:平行四邊形面積=底×高,所以:梯形面積=(上底+下底)×高÷2。即:S=(a 【4】畫圖說明圓面積公式的推導過程
①把圓分成若幹等份,剪開後,拼成了一個近似的長方形。
②長方形的長相當于圓周長的一半,寬相當于圓的半徑。
③因為:長方形面積=長×寬,所以:圓面積=πr×r=πr2。即:S=πr2。
十六、平面圖形的周長和面積計算公式:
長方形周長 =(長 寬)× 2 C = πd S = πr2
長方形面積 = 長 × 寬 C = 2πr S =π()2
正方形周長 = 邊長 × 4 r= d÷2 S=π()2
正方形面積 = 邊長 × 邊長 r=C ÷2π
平行四邊形面積 = 底 × 高 d=2r
三角形面積 = 底 × 高 ÷ 2 d=c ÷π
十七、常用數據:
常用平方數(π=3.14)
2π=6.28 3π=9.42
立體圖形【認識、表面積、體積】
一、長方體、正方體都有6個面,12條棱,8個頂點。正方體是特殊的長方體。
二、圓柱的特征:一個側面、兩個底面、無數條高。
三、圓錐的特征:一個側面、一個底面、一個頂點、一條高。
四、表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
五、體積:物體所占空間的大小叫做物體的體積。容器所能容納其它物體的體積叫做容器的容積。
六、圓柱和圓錐三種關系:
①等底等高: 體積1︰3
②等底等體積:高1︰3
③等高等體積:底面積1︰3
七、等底等高的圓柱和圓錐:
①圓錐體積是圓柱的1/3,
②圓柱體積是圓錐的3倍,
③圓錐體積比圓柱少2/3,
④圓柱體積比圓錐多2倍。
八、等底等高的圓柱和圓錐:錐1、差2、柱3、和4。
九、立體圖形公式推導:
【1】圓柱的側面展開後得到一個什麼圖形?這個圖形的各部分與圓柱有何關系?(圓柱側面積公式的推導過程)
①圓柱的側面展開後一般得到一個長方形。
②長方形的長相當于圓柱的底面周長,長方形的寬相當于圓柱的高。
③因為:長方形面積=長×寬,所以:圓柱側面積=底面周長×高。
④圓柱的側面展開後還可能得到一個正方形。
正方形的邊長=圓柱的底面周長=圓柱的高。
【2】我們在學習圓柱體積的計算公式時,是把圓柱轉化成以前學過的一種立體圖形(近似的)進行推導的,請你說出這種立體圖形的名稱以及它與圓柱體有關部分之間的關系?
①把圓柱分成若幹等份,切開後拼成了一個近似的長方體。
②長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
③因為:長方體體積=底面積×高,所以:圓柱體積=底面積×高。即:V=Sh。
【3】請畫圖說明圓錐體積公式的推導過程?
①找來等底等高的空圓錐和空圓柱各一隻。
②将圓錐裝滿沙子,倒入圓柱中,發現三次正好裝滿,将圓柱裡的沙子倒入圓錐中,發現三次正好倒完。
③通過實驗發現:圓錐的體積等于和它等底等高的圓柱體積的三分之一;圓柱的體積等于和它等底等高的圓錐體積的三倍。即:V=1/3Sh。
十、立體圖形的棱長總和、表面積、體積計算公式:
名稱 計算公式
長方體棱長總和 長方體棱長總和 = (長 寬 高)× 4
長方體表面積 長方體表面積=(長×寬 長×高 寬×高)×2
長方體體積 長方體體積=長×寬×高
正方體棱長總和 正方體棱長總和=棱長×12
正方體表面積 正方體表面積=棱長×棱長×6
正方體體積 正方體體積=棱長×棱長×棱長
圓柱體側面積 圓柱體側面積=底面周長×高
圓柱體表面積 圓柱體表面積=側面積 底面積×2
圓柱體體積 圓柱體體積=底面積×高
圓錐體體積 圓錐體體積=Sh
(二)圖形與變換
一、變換圖形位置的方法有平移、旋轉等,在變換位置時,每個圖形的相應頂點、線段、曲線應同步平移,旋轉相同的角度。
二、不改變圖形的形狀,隻改變它的大小時,通常要使每個圖形的要素,如長方形
的長與寬,三角形的底與高等同時按相同比例放大或縮小。
三、對稱圖形是對稱軸兩邊的圖形經對折後能夠完全重合,而不是完全相同。
(三)圖形與位置
一、當我們處在實際生活及情景中,面對教短距離時,通常用上、下、前、後來描述具體位置。
二、當我們面對地圖、方位圖時,通常用東、西、南、北,南偏東、北偏東……來描述方向。再結合所示比例尺計算出具體距離,把方向與距離結合起來确定位置。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!