tft每日頭條

 > 生活

 > 高考數學必考知識點歸納文檔

高考數學必考知識點歸納文檔

生活 更新时间:2025-01-25 06:22:24

  極客數學幫整理高三數學知識點,幫助同學們在高三這個關鍵時期有效的進行複習。面對依舊存疑的知識點一定要多看幾遍,及時找同學、老師請教。接下來就一起來看看高三數學知識點有哪些吧。

高考數學必考知識點歸納文檔(必備高三數學知識點)1

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

  2、忽視集合元素的三性緻誤

  集合中的元素具有确定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特别是帶有字母參數的集合,實際上就隐含着對字母參數的一些要求。

  3、判斷函數奇偶性忽略定義域緻誤

  判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關于原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

  4、函數零點定理使用不當緻誤

  如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,并且有f(a)f(b)<0,那麼,函數y=f(x)在區間(a,b)内有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)内有零點。函數的零點有“變号零點”和“不變号零點”,對于“不變号零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題。

  5、函數的單調區間理解不準緻誤

  在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對于函數的幾個不同的單調遞增(減)區間,切忌使用并集,隻要指明這幾個區間是該函數的單調遞增(減)區間即可。

  6、三角函數的單調性判斷緻誤

  對于函數y=Asin(ωx φ)的單調性,當ω>0時,由于内層函數u=ωx φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時,内層函數u=ωx φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性将内層函數的系數變為正數後再加以解決。對于帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。

  7、向量夾角範圍不清緻誤

  解題時要全面考慮問題。數學試題中往往隐含着一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量緻誤

  零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。

  9、對數列的定義、性質理解錯誤

  等差數列的前n項和在公差不為零時是關于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2 bn c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數列。

  10、an與Sn關系不清緻誤

  在數列問題中,數列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2。這個關系對任意數列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。

  11、錯位相減求和項處理不當緻誤

  錯位相減求和法的适用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這裡最容易出現問題的就是錯位相減後對剩餘項的處理。

  12、不等式性質應用不當緻誤

  在使用不等式的基本性質進行推理論證時一定要準确,特别是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤。

  13、數列中的最值錯誤

  數列問題中其通項公式、前n項和公式都是關于正整數n的函數,要善于從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開讨論,再看能不能統一。在關于正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。

  14、不等式恒成立問題緻誤

  解決不等式恒成立問題的常規求法是:借助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法。通過最值産生結論。應注意恒成立與存在性問題的區别,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特别注意兩函數中的最大值與最小值的關系。

  15、忽視三視圖中的實、虛線緻誤

  三視圖是根據正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

  16、面積體積計算轉化不靈活緻誤

  面積、體積的計算既需要學生有紮實的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還台為錐的思想:這是處理台體時常用的思想方法。(2)割補法:求不規則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關于旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解。

  17、忽視基本不等式應用條件緻誤

  利用基本不等式a b≥2ab以及變式ab≤a b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a b其中之一應是定值,特别要注意等号成立的條件。對形如y=ax bx(a,b>0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的符号,必要時要進行分類讨論,另外要注意自變量x的取值範圍,在此範圍内等号能否取到。

  以上就是極客數學幫整理的有關必備高三數學知識點的全部内容了。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved