高中數學圓錐曲線第一題解題技巧? 圓錐曲線之所以叫做圓錐曲線,是因為它是從圓錐上截出來的古希臘數學家阿波羅尼采用平面切割圓錐的方法來研究這幾種曲線用垂直于錐軸的平面去截圓錐,得到了圓;把平面漸漸傾斜,得到了橢圓;當平面傾斜到"和且僅和"圓錐的一條母線平行時,得到了抛物線;用平行圓錐的軸的平面截取,可得到雙曲線的一邊,以圓錐頂點做對稱圓錐,則可得到雙曲線,今天小編就來聊一聊關于高中數學圓錐曲線第一題解題技巧?接下來我們就一起去研究一下吧!
圓錐曲線之所以叫做圓錐曲線,是因為它是從圓錐上截出來的。古希臘數學家阿波羅尼采用平面切割圓錐的方法來研究這幾種曲線。用垂直于錐軸的平面去截圓錐,得到了圓;把平面漸漸傾斜,得到了橢圓;當平面傾斜到"和且僅和"圓錐的一條母線平行時,得到了抛物線;用平行圓錐的軸的平面截取,可得到雙曲線的一邊,以圓錐頂點做對稱圓錐,則可得到雙曲線。
高考數學複習方法總結:高中數學--圓錐曲線
在高中的學習中,平面解析幾何研究的兩個主要問題,一個是根據已知條件,求出表示平面曲線的方程;而另一個就是通過方程,研究平面曲線的性質.
那麼接下來,我們就就着這兩個問題來說啦~
(一)曲線與方程
首先第一個問題,我們想到的就是曲線與方程的這部分内容了。
在學習圓錐曲線這部分内容之前,我們最早接觸到的就是曲線與方程這部分内容。在這部分呢,我們要注意到的是幾種常見求軌迹方程的方法。在這裡呢,簡單的說一下,一共有四種方法:1.直接法由題設所給(或通過分析圖形的幾何性質而得出)的動點所滿足的幾何條件列出等式,再用坐标代替這等式,化簡得曲線的方程,這種方法叫直接法.
2.定義法
利用所學過的圓的定義、橢圓的定義、雙曲線的定義、抛物線的定義直接寫出所求的動點的軌迹方程,這種方法叫做定義法.這種方法要求題設中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件.
3.相關點法
若動點P(x,y)随已知曲線上的點Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則将Q點坐标表達式代入已知曲線方程,即得點P的軌迹方程.這種方法稱為相關點法(或代換法).
4.待定系數法
求圓、橢圓、雙曲線以及抛物線的方程常用待定系數法求
(二)橢圓,雙曲線,抛物線
這部分就可以研究第二個問題了呢。在橢圓,雙曲線以及抛物線裡,最最重要的就是他們的标準方程,因為我們可以從它們的标準方程中看到許多東西,包括頂點,焦點,圖形的畫法等等等等,所以這個呢是要求我們必須要會的。(不會的通宵快去惡補~~~)
在一般做題的時候,我們要首先要根據題意來畫圖,這點特别重要,我們要清楚題目要我們求什麼才能繼續做下去不是。接下來就是根據題意來寫過程了,我們的一般步驟呢都是建系,設點,聯立方程,化簡,判斷△,韋達定理,列關系式,整理,作答。在考試中,我們按照步驟一步一步的寫,寫到韋達定理至少8分有了。當然了,各圓錐曲線的幾何性質也尤其重要,包括離心率,頂點,對稱性,範圍,以及焦點弦,準線,漸近線等等。這些性質大家也要熟練掌握并且會應用。在這部分呢,還有很多很多的專題,譬如弦長問題,那大家還記得弦長公式嗎?中點弦問題,我們通常會用到點差法,那麼何為點差法呢?就是把兩點坐标代入曲線方程作差後得到直線的斜率和弦中點坐标之間的關系式,這種方法。還有一類問題就是直線與圓錐曲線的位置關系。分為三大類:有直線與橢圓的位置關系,就是看△;直線與雙曲線的位置關系,先看聯立之後的方程中的a,如果a=0方程有一解,直線與雙曲線有一個公共點(直線與漸近線平行),a≠0的時候,還是看△啦;而直線與抛物線與直線與雙曲線的位置關系是類似的,當a=0直線與抛物線有一個公共點(直線與抛物線的軸平行或重合),a≠0的時候,還是看△。
說了這麼多,你記住多少呢?其實圓錐曲線這塊知識點很有規律的,很多的知識點都是類似的。當然,因為圓錐曲線這塊的題都不太好算,所以大家在做題的過程中不要着急,要保持平和的心态。因為隻有這樣,才能保證少丢分.
來源:7C教育資源網
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!