tft每日頭條

 > 生活

 > 分數除以整數教學設計及設計意圖

分數除以整數教學設計及設計意圖

生活 更新时间:2025-02-11 21:46:44

分數除以整數教學設計及設計意圖?“分數乘整數”是人教版六年級數學上冊《分數乘法》第一課時,教材利用整數乘法的意義來引入分數乘整數,并通過将分數乘法轉化成分數加法來探究分數乘整數的算理,掌握計算方法在以往的教學中我是這樣來教學的:,我來為大家講解一下關于分數除以整數教學設計及設計意圖?跟着小編一起來看一看吧!

分數除以整數教學設計及設計意圖(分數乘整數教學新設計)1

分數除以整數教學設計及設計意圖

“分數乘整數”是人教版六年級數學上冊《分數乘法》第一課時,教材利用整數乘法的意義來引入分數乘整數,并通過将分數乘法轉化成分數加法來探究分數乘整數的算理,掌握計算方法。在以往的教學中我是這樣來教學的:

先通過問題:5個12是多少,讓學生分别用加法和乘法計算,實現對整數乘法意義的複習,在此基礎上,又讓學生練習兩道同分母分數加法來幫助學生複習同分母加減法的計算方法。随後出示例1,借助圖形數形結合讓學生列式,然後引領學生對加法和乘法兩種不同方法聯系,得出分數乘整數的意義。接下來分别計算後,歸納總結出分數乘整數的計算方法。

這樣的處理往往有生搬硬套之感,學生往往知其然不知其所以然,理解掌握得并不好。另分數乘法的意義如同灌輸,對算理的教學往往演變成一掠而過後的算法歸納,導緻學生得魚忘筌。

問題驅動是數學教學一條基本教學原理,為了使學生更好地理解分數乘整數的意義和算理,掌握算法,我設計了如下自學提綱:

1. 自學例1,說一說在什麼情況下分數加法要改寫成分數乘整數?聯系整數乘法的意義,想一想,你有什麼發現?

2. 用自己的話說一說,分數乘整數的計算方法。

3. 分數乘整數時,整數為什麼隻能和分子相乘,而不能和分母相乘?

4. 先約分再計算有什麼好處?

這樣的設計,問題1是引導學生溝通分數乘法意義和整數乘法意義之間的關系,讓學生在知識遷移的過程中,反省抽象出分數乘整數的意義和整數乘法的意義相同,都是求幾個相同加數的和的簡便運算。問題2是本節課學習掌握的重點,是讓學生用自己的方式去歸納總結,實現個性化學習。問題3、4是緊扣重點,聚焦難點辨析易混點,期待突破重難點。

師:同學們,通過我們的自主探究,你們有什麼發現?

生1:幾個相同的分數相加時,可以用分數乘法表示。

生2:分數乘整數時,用分子和整數相乘的積做分子,分母不變。為了計算簡便,能約分的要約分。

生3:我是通過畫圖的方法來說明第3個問題的,我們知道例1中,求3人一共吃多少個,就是求3個

的和是多少,可以參考課本上将一個圓平均分成9分,每人吃其中得2分,3個人一共吃掉3個2份,所以3要乘2,而不是乘分母9。

師:生3的方法借助圖形,數形結合,直觀形象容易理解,很會思考問題!對于這個問題,還有沒有不同的想法嗎?

生4:我是根據算式理解的,在計算

時,因為

,結果是

,這個6是怎麼來的?它是分子2 2 2=2×3得來的,所以整數隻能和分子相乘。

師:生4利用計算的道理,合理解釋分子和整數相乘的道理,非常好!

生5:先約分,可以把把分母和分子上的數化小,使計算簡便。

學起于思,思源于疑,學是從思考和疑問開始的。這樣的教學設計,緊扣教學重點和關鍵,通過設計針對性的問題,讓學生帶着問題自學探究,使學生擁有學習的主動權。這樣的學習過程,溝通了知識之間的聯系,實現對算理的多元化表征,學生的學習不單是知識由外到内的轉移和傳遞,更是學生主動建構自己知識經驗的過程,真正實現了知識的自主建構。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved