tft每日頭條

 > 教育

 > 小學奧數60題解題

小學奧數60題解題

教育 更新时间:2025-01-10 07:19:10

整數的拆分

不連續加數拆分

例1:

将一根長144厘米的鐵絲,做成長和寬都是整數的長方形,共有______種不同的做法?其中面積最大的是哪一種長方形?

講析:做成的長方形,長與寬的和是

144÷2=72(厘米)。

因為72=1 71=2 70=3 69=……=35 37=36 36,

所以,一共有36種不同的做法。

比較以上每種長方形長與寬的積,可發現:當長與寬都是36厘米時,面積最大。

小學奧數60題解題(小學奧數各年級經典題解題技巧大全)1

例2:

将1992表示成若幹個自然數的和,如果要使這些數的乘積最大,這些自然數是______。

講析:若把一個整數拆分成幾個自然數時,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比它大。又如果拆分的數中含有1,則與“乘積最大”不符。

所以,要使加數之積最大,加數隻能是2和3。

但是,若加數中含有3個2,則不如将它分成2個3。因為2×2×2=8,而3×3=9。

所以,拆分出的自然數中,至多含有兩個2,而其餘都是3。

而1992÷3=664。故,這些自然數是664個3。

小學奧數60題解題(小學奧數各年級經典題解題技巧大全)1

例3:

把50分成4個自然數,使得第一個數乘以2等于第二個數除以2;第三個數加上2等于第四個數減去2,最多有______種分法。

講析:設50分成的4個自然數分别是a、b、c、d。

因為a×2=b÷2,則b=4a。所以a、b之和必是5的倍數。

那麼,a與b的和是5、10、15、20、25、30、35、40、45。

又因為c+2=d-2,即d=c+4。所以c、d之和加上4之後,必是2的倍數。

則c、d可取的數組有:

(40、10),(30、20),(20、30),(10、40)。

由于40÷5=8,40-8=32;(10-4)÷2=3,10-3=7,

得出符合條件的a、b、c、d一組為(8、32、3、7)。

同理得出另外三組為:(6、24、8、12),(4、16、13、17),(2、8、18、22)。

所以,最多有4種分法。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关教育资讯推荐

热门教育资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved