初中一年級上冊數學第一章知識點?第一章 有理數 一、知識框架,接下來我們就來聊聊關于初中一年級上冊數學第一章知識點?以下内容大家不妨參考一二希望能幫到您!
第一章 有理數
一、知識框架
二.知識概念
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數, a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)隻有符号不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0 ? a b=0 ? a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類讨論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同号兩數相加,取相同的符号,并把絕對值相加;
(2)異号兩數相加,取絕對值較大的符号,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a b=b a ;(2)加法的結合律:(a b) c=a (b c).
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a (-b).
10 有理數乘法法則:
(1)兩數相乘,同号為正,異号為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符号由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b c)=ab ac .
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次幂都是正數;
(2)負數的奇次幂是負數;負數的偶次幂是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做幂;
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位隻有一位的數,這種記數法叫科學記數法.
16.近似數的精确位:一個近似數,四舍五入到那一位,就說這個近似數的精确到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精确的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:先乘方,後乘除,最後加減.
本章内容要求學生正确認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題.
體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正确的數感和解決實際問題的能力。教師在講授本章内容時,應該多創設情境,充分體現學生學習的主體性地位。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!