tft每日頭條

 > 生活

 > 正數和負數有理數的定義

正數和負數有理數的定義

生活 更新时间:2025-01-18 02:11:46

正數和負數有理數的定義?正數和負數⒈正數和負數的概念,下面我們就來聊聊關于正數和負數有理數的定義?接下來我們就一起去了解一下吧!

正數和負數有理數的定義(有理數幾個概念)1

正數和負數有理數的定義

正數和負數

⒈正數和負數的概念

負數:比0小的數

正數:比0大的數

0既不是正數,也不是負數

注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正号的數是正數,帶負号的數是負數,這種說法是錯誤的,例如 a,-a就不能做出簡單判斷)

②正數有時也可以在前面加“ ”,有時“ ”省略不寫。所以省略“ ”的正數的符号是正号。

具有相反意義的量

若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

零上8℃表示為: 8℃;零下8℃表示為:-8℃

3.0表示的意義

⑴0表示“ 沒有”,如教室裡有0個人,就是說教室裡沒有人;

⑵0是正數和負數的分界線,0既不是正數,也不是負數。

有理數

有理數的概念

⑴正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

⑵正分數和負分數統稱為分數

⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

理解:隻有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。

注意:引入負數以後,奇數和偶數的範圍也擴大了,像-2,-4,-6,-8…也是偶數,-1,-3,-5…也是奇數。

有理數的分類

⑴按有理數的意義分類 ⑵按正、負來分

正整數 正整數

整數 0 正有理數

負整數 正分數

有理數 有理數 0 (0不能忽視)

正分數 負整數

分數 負有理數

負分數 負分數

總結:①正整數、0統稱為非負整數(也叫自然數)

②負整數、0統稱為非正整數

③正有理數、0統稱為非負有理數

④負有理數、0統稱為非正有理數

數軸

⒈數軸的概念

規定了原點,正方向,單位長度的直線叫做數軸。

注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;⑶同一數軸上的單位長度要統一;⑷數軸的三要素都是根據實際需要規定的。

2.數軸上的點與有理數的關系

⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。

⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)

3.利用數軸表示兩數大小

⑴在數軸上數的大小比較,右邊的數總比左邊的數大;

⑵正數都大于0,負數都小于0,正數大于負數;

⑶兩個負數比較,距離原點遠的數比距離原點近的數小。

4.數軸上特殊的最大(小)數

⑴最小的自然數是0,無最大的自然數;

⑵最小的正整數是1,無最大的正整數;

⑶最大的負整數是-1,無最小的負整數

5.a可以表示什麼數

⑴a>0表示a是正數;反之,a是正數,則a>0;

⑵a<0表示a是負數;反之,a是負數,則a<0

⑶a=0表示a是0;反之,a是0,,則a=0

6.數軸上點的移動規律

根據點的移動,向左移動幾個單位長度則減去幾,向右移動幾個單位長度則加上幾,從而得到所需的點的位置。

相反數

⒈相反數

隻有符号不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。

注意:⑴相反數是成對出現的;⑵相反數隻有符号不同,若一個為正,則另一個為負;

⑶0的相反數是它本身;相反數為本身的數是0。

2.相反數的性質與判定

⑴任何數都有相反數,且隻有一個;

⑵0的相反數是0;

⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a b=0

3.相反數的幾何意義

在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。

說明:在數軸上,表示互為相反數的兩個點關于原點對稱。

4.相反數的求法

⑴求一個數的相反數,隻要在它的前面添上負号“-”即可求得(如:5的相反數是-5);

⑵求多個數的和或差的相反數是,要用括号括起來再添“-”,然後化簡(如;5a b的相反數是-(5a b)。化簡得-5a-b);

⑶求前面帶“-”的單個數,也應先用括号括起來再添“-”,然後化簡(如:-5的相反數是-(-5),化簡得5)

5.相反數的表示方法

⑴一般地,數a 的相反數是-a ,其中a是任意有理數,可以是正數、負數或0。

當a>0時,-a<0(正數的相反數是負數)

當a<0時,-a>0(負數的相反數是正數)

當a=0時,-a=0,(0的相反數是0)

6.多重符号的化簡

多重符号的化簡規律:“ ”号的個數不影響化簡的結果,可以直接省略;“-”号的個數決定最後化簡結果;即:“-”的個數是奇數時,結果為負,“-”的個數是偶數時,結果為正。

絕對值

⒈絕對值的幾何定義

一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。

2.絕對值的代數定義

⑴一個正數的絕對值是它本身; ⑵一個負數的絕對值是它的相反數; ⑶0的絕對值是0.

可用字母表示為:

①如果a>0,那麼|a|=a; ②如果a<0,那麼|a|=-a; ③如果a=0,那麼|a|=0。

可歸納為①:a≥0,<═> |a|=a (非負數的絕對值等于本身;絕對值等于本身的數是非負數。)

②a≤0,<═> |a|=-a (非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)

3.絕對值的性質

任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0 <═> |a|=0;

⑵一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;

⑶任何數的絕對值都不小于原數。即:|a|≥a;

⑷絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;

⑸互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a b=0,則|a|=|b|;

⑹絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;

⑺若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a| |b|=0,則a=0且b=0。

(非負數的常用性質:若幾個非負數的和為0,則有且隻有這幾個非負數同時為0)

4.有理數大小的比較

⑴利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;

⑵利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異号兩數比較大小,正數大于負數。

5.絕對值的化簡

①當a≥0時, |a|=a ; ②當a≤0時, |a|=-a

6.已知一個數的絕對值,求這個數

一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved