tft每日頭條

 > 圖文

 > 等腰三角形的頂角和底角怎麼算

等腰三角形的頂角和底角怎麼算

圖文 更新时间:2024-12-02 06:53:32

幾何圖形中添加輔助線往往能把分散的條件集中起來,使隐蔽的條件顯現,将複雜的問題簡單化,

在解題的過程中有時需要構造等腰三角形,利用等腰三角形的性質從而使問題迎刃而解 .

本節主要來介紹下常用構造等腰三角形的方法 .

方法一 作 “平行線” 來構造等腰三角形

1.如圖,在 △ABC 中,AB = AC,點 D 在 AB 上,點 E 在 AC 的延長線上,DE 交 BC 于點 F,

且 DF = EF .

求證:BD = CE .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)1

證明:過點 D 作 DG∥AE,交 BC 于 G 點,則 ∠GDF = ∠E .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)2

∵ ∠GDF = ∠CEF,∠DFG = ∠EFC,DF = EF ,

∴ △DGF ≌ △ECF(ASA),

∴ GD = CE .

∵ AB = AC ,

∴ ∠B = ∠ACB,

∵ DG∥AE,

∴ ∠DGB = ∠ACB,

∴ ∠DBG = ∠DGB,

∴ GD = BD ,

∴ BD = CE .

2.已知 △ABC 為等邊三角形,點 D 為 AC 上的一個動點,點 E 為 BC 延長線上一點,且 BD = DE .

(1)如圖 ①,若點 D 在邊 AC 上,猜想線段 AD 與 CE 之間的關系,并說明理由;

(2)如圖 ②,若點 D 在 AC 的延長線上,(1)中的結論是否還成立,請說明理由 .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)3

解:

(1)AD = CE .

理由如下:過點 D 作 DP∥BC,交 AB 于點 P .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)4

∵ △ABC 是等邊三角形,

∴ △APD 也是等邊三角形,

∴ AP = PD = AD , ∠APD = ∠ABC = ∠ACB = ∠PDA = 60°,

∵ DB = DE ,

∴ ∠DBC = ∠DEC,

∵ DP∥BC,

∴ ∠PDB = ∠DBC .

∴ ∠PDB = ∠DEC .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)5

又 ∵ ∠BPD = ∠A ∠ADP = 120°,∠DCE = ∠A ∠ABC = 120°,

∴ ∠BPD = ∠DCE .

在 △BPD 和 △DCE 中,

∠BPD = ∠DCE,∠PDB = ∠CED,DB = DE ,

∴ △BPD ≌ △DCE(AAS),

∴ PD = CE,

∴ AD = CE ;

(2)(1)中的結論成立 .

理由如下:過點 D 作 DP∥BC,交 AB 的延長線于點 P .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)6

∵ △ABC 是等邊三角形,

∴ △APD 也是等邊三角形,

∴ AP = PD = AD , ∠APD = ∠ABC = ∠ACB = ∠PDC = 60°,

∵ DB = DE ,

∴ ∠DBC = ∠CED .

∵ DP∥BC,

∴ ∠PDB = ∠DBC,

∴ ∠PDB = ∠CED .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)7

在 △BPD 和 △DCE 中,

∠P = ∠DCE,∠PDB = ∠CED,DB = DE ,

∴ △BPD ≌ △DCE(AAS),

∴ PD = CE ,

∴ AD = CE .

方法二 利用 “三線合一” 構造等腰三角形

3.如圖,在 △ABC 中,BP 平分 ∠ABC,且 AP⊥BP 于點 P , 連接 CP .

若 BC = 4,點 P 到 BC 的距離為 1,求 △ABC 的面積 .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)8

解:延長 AP 交 BC 于點 E .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)9

∵ BP 平分 ∠ABC,

∴ ∠ABP = ∠EBP .

∵ AP⊥BP,

∴ ∠APB = ∠BPE .

在 △APB 和 △EPB 中,

∠ABP = ∠EBP,BP = BP , ∠BPA = ∠BPE,

∴ △APB ≌ △EPB(ASA),

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)10

∴ S△ABP = S△BPE,AP = PE .

∵ △APC 與 △PCE 等底同高,

∴ S△APC = S△PCE,

∴ S△ABC = S△ABP S△BPE S△APC S△PCE = 2 S△BPC,

∵ BC = 4,點 P 到 BC 的距離為 1,

∴ S△BPC = 1/2 × 4 × 1 = 2,

∴ S△ABC = 2 × 2 = 4 .

4.如圖,已知 △ABC 是等腰直角三角形,∠A = 90°,BD 平分 ∠ABC 交 AC 于點 D,CE⊥BD,

交 BD 的延長線于點 E .

求證:BD = 2 CE .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)11

證明:延長 BA , CE 交于點 M .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)12

∵ CE⊥BD,

∴ ∠BEC = ∠BEM = 90° .

∵ BD 平分 ∠ABC,

∴ ∠MBE = ∠CBE .

又 ∵ BE = BE ,

∴ △MBE ≌ △CBE(ASA),

∴ EM = EC = 1/2 MC .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)13

∵ △ABC 是等腰直角三角形,

∴ ∠BAC = ∠MAC = 90°,AB = AC ,

∴ ∠ABD ∠BDA = 90° .

∵ ∠BEC = 90°,

∴ ∠ACM ∠CDE = 90° .

∵ ∠BDA = ∠CDE,

∴ ∠ABD = ∠ACM .

在 △ABD 和 △ACM 中,

∠ABD = ∠ACM,AB = AC , ∠BAD = ∠CAM,

∴ △ABD ≌ △ ACM(ASA),

∴ DB = MC,

∴ BD = 2 CE .

方法三 利用 “倍角關系” 構造等腰三角形

5.如圖,在 △ABC 中,AD 平分 ∠BAC 交 BC 于點 D,且 ∠ABC = 2 ∠C .

求證:AB BD = AC .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)14

證明:在邊 AC 上截取 AP = AB,連接 PD .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)15

∵ AD 平分 ∠BAC,

∴ ∠BAD = ∠PAD .

在 △ABD 和 △APD 中,

AB = AP,∠BAD = ∠PAD,AD = AD ,

∴ △ABD ≌ △APD(SAS).

∴ ∠APD = ∠B,PD = BD .

∵ ∠B = 2 ∠C,

∴ ∠APD = 2 ∠C .

又 ∵ ∠APD = ∠C ∠PDC,

∴ ∠PDC = ∠C,

∴ PD = PC ,

∴ AB BD = AP PC = AC .

方法四 利用 “截長補短法” 構造等腰三角形

6.如圖,在 △ABC 中,∠BAC = 120°,AD⊥BC 于點 D,且 AB BD = DC , 求 ∠C 的度數 .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)16

方法一:截長法

如圖,在 CD 上截取點 E,使 DE = BD,連接 AE .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)17

∵ AD⊥BE,DE = BD,

∴ AB = AE .

∵ AB BD = DC ,

∴ AE DE = DC .

又 ∵ DE CE = DC ,

∴ CE = AE = AB .

∴ ∠B = ∠AED = ∠C ∠CAE = 2 ∠C .

∵ ∠BAC ∠B ∠C = ∠BAC 3 ∠C = 180°,∠BAC = 120°,

∴ ∠C = 20°;

方法二:補短法

如圖,延長 DB 至點 F,使得 BF = AB,則 AB BD = BF BD = DF = CD ,

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)18

∴ AF = AC , ∠C = ∠F = 1/2 ∠ABC .

∵ ∠BAC ∠ABC ∠C = ∠BAC 3 ∠C = 180°,∠BAC = 120°,

∴ ∠C = 20° .

7.如圖,在 △ABC 中,AB = AC,點 D 是 △ABC 外一點,且 ∠ABD = 60°,∠ACD = 60° .

求證:BD DC = AB .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)19

證明:延長 BD 至點 E,使得 BE = AB,連接 AE , CE .

等腰三角形的頂角和底角怎麼算(構造等腰三角形的常用方法)20

∵ ∠ABE = 60°,BE = AB ,

∴ △ABE 為等邊三角形,

∴ ∠AEB = 60°,AE = AB .

又 ∵ ∠ACD = 60°,

∴ ∠ACD = ∠ABE .

∵ AB = AC , AB = AE ,

∴ AC = AE ,

∴ ∠ACE = ∠AEC,

∴ ∠DCE = ∠DEC,

∴ DC = DE ,

∴ AB = BE = BD DE = BD DC ,

即 BD DC = AB .

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关圖文资讯推荐

热门圖文资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved