不動點法求數列通項原理?不動點法求數列通項原理是不動點是使f(x)=x的x值,設不動點為x0,則f(x0)-x0=0,即x是f(x)-x0=0的根,所以f(x)-x0因式分解時有x-x0這個因子,對數列有a(n+1)=f(an),兩邊同時減去不動點x0有a(n+1)-x0=f(an)-x0,f(an)-x0隻不過是把x換成了an,所以f(an)-x0有an-x0這個因子,所以a(n+1)-x0=(an-x0)*g(an),減去不動點後兩邊出現了形式相同的項an-x0,g(an)則相當于公比,我來為大家講解一下關于不動點法求數列通項原理?跟着小編一起來看一看吧!
不動點法求數列通項原理是不動點是使f(x)=x的x值,設不動點為x0,則f(x0)-x0=0,即x是f(x)-x0=0的根,所以f(x)-x0因式分解時有x-x0這個因子,對數列有a(n+1)=f(an),兩邊同時減去不動點x0有a(n+1)-x0=f(an)-x0,f(an)-x0隻不過是把x換成了an,所以f(an)-x0有an-x0這個因子,所以a(n+1)-x0=(an-x0)*g(an),減去不動點後兩邊出現了形式相同的項an-x0,g(an)則相當于公比。
不動點法(fixed point method)是解方程的一種一般方法,對研究方程解的存在性、唯一性和具體計算有重要的理論與實用價值。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!