結論1、過抛物線的焦點F的直線l交抛物線于A、B兩點,設

(1)




結論2、直線l交抛物線于A(



例1、過抛物線


A. 2a
B.

C. 4a
D.

解:将抛物線方程


例2、設抛物線E為,AB和CD為過焦點F的弦。求證:(1)

證明:(1)由結論1中的(3)知

(2)設A、B、C(


則以AB為直徑的圓的方程為

以CD為直徑的圓的方程為

兩式相減并整理得公共弦方程:

由結論1中的(1)(2)知:

則公共弦方程中常數項為0,故公共弦必過原點。
例3、設抛物線的焦點為F,經過點F的直線交抛物線于A、B兩點,點C在抛物線的準線上,且BC//x軸。證明:直線AC經過原點O。
證明:設A、B,由結論1中的(2)知
∵BC//x軸,且點C在抛物線的準線上,
∴點C的坐标為


則直線AC經過原點O。
例4、已知抛物線

(1)求點H的軌迹方程。
(2)設過A、B、O三點的圓的圓心為C,直線l的傾斜角的範圍為

,求直線OC的斜率的取值範圍。
解:(1)因為,
由結論2知:直線l經過定點M(0,2p)。
由OH⊥l,得

設H(x,y),則

∴所求點H的軌迹方程為:

(2)因為,由結論2知:OA⊥OB,則圓心C為AB的中點,
故可設直線l方程為:

代入抛物線方程消去y得

由中點坐标公式,求得C(pk,

則

又由題設知:


更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!