人教版新課标六年級數學下冊重要知識點複習提綱
一、負數:
1、在熟悉的生活情境中初步認識負數,能正确的讀、寫正數和負數,知道0既不是正數也不是負數。
2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3、能借助數軸初步學會比較正數、0和負數之間的大小。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索并掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
三、比例
1、理解比例的意義和基本性質,會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐标系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4、了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5、認識放大與縮小現象,能利用方格紙等形式按一定的比例将簡單圖形放大或縮小,體會圖形的相似。
6、滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙教育
四、統計
1、會綜合應用學過的統計知識,能從統計圖中準确提取統計信息,能夠正确解釋統計結果。
2、能根據統計圖提供的信息,做出正确的判斷或簡單預測。
五、數學廣角
1、經曆"抽屜原理"的探究過程,初步了解"抽屜原理",會用"抽屜原理"解決簡單的實際問題。 2、通過"抽屜原理"的靈活應用感受數學的魅力。
六、整理和複習
1、比較系統地掌握有關整數、小數、分數和百分數、負數、比和比例、方程的基礎知識。能比較熟練地進行整數、小數、分數的四則運算,能進行整數、小數加、減、乘、除的估算,會使用學過的簡便算法,合理、靈活地進行計算;會解學過的方程;養成檢查和驗算的習慣。
2、鞏固常用計量單位的表象,掌握所學單位間的進率,能夠進行簡單的改寫。
3、掌握所學幾何形體的特征;能夠比較熟練地計算一些幾何形體的周長、面積和體積,并能應用;鞏固所學的簡單的畫圖、測量等技能;鞏固軸對稱圖形的認識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉的認識;能用數對或根據方向和距離确定物體的位置,掌握有關比例尺的知識,并能應用。
4、掌握所學的統計初步知識,能夠看和繪制簡單的統計圖表,能夠根據數據做出簡單的判斷與預測,會求一些簡單事件的可能性,能夠解決一些計算平均數的實際問題。
5、進一步感受數學知識間的相互聯系,體會數學的作用;掌握所學的常見數量關系和解決問題的思考方法,能夠比較靈活地運用所學知識解決生活中一些簡單的實際問題。
(一)數的讀法和寫法 1.
整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個"億"或"萬"字。每一級末尾的0都不讀出來,其它數位連續有幾個0都隻讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3.
小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作"點",小數部分從左向右順次讀出每一位數位上的數字。 4.
小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 5.
分數的讀法:讀分數時,先讀分母再讀"分之"然後讀分子,分子和分母按照整數的讀法來讀。 6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分号前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分号"%"來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用"萬"或"億"作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。 1.
準确數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的準确數。 例如把 1254300000
改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。 2.
近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。 3.
四舍五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進1。例如:省略
345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。 4. 大小比較 1.
比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。 (三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:隻要把小數點向右移動兩位,同時在後面添上百分号。
5. 百分數化成小數:把百分數化成小數,隻要把百分号去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商隻有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;
兩個合數的公約數隻有1時,這兩個合數互質。
(五) 約分和通分 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
小數
1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數裡,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位"十分之一"和整數部分的最低單位"一"之間的進率也是10。 2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、
5.26 都是帶小數。 有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重複出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重複出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是" 9 " , 0.5454 ……的循環節是" 54
" 。 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分隻需寫出一個循環節,并在這個循環節的首、末位數字上各點一個圓點。如果循環 節隻有
一個數字,就隻在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
分數
1 分數的意義 把單位"1"平均分成若幹份,表示這樣的一份或者幾份的數叫做分數。
在分數裡,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位"1"平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位"1"平均分成若幹份,表示其中的一份的數,叫做分數單位。 2 分數的分類 真分數:分子比分母小的分數叫做真分數。真分數小于1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。 分子分母是互質數的分數,叫做最簡分數。
把異分母分數分别化成和原來分數相等的同分母分數,叫做通分。
(四)百分數 1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率
或百分比。百分數通常用"%"來表示。百分号是表示百分數的符号。
比例 表示兩個相等的式子叫做比例。
在比例裡,兩個外項的積等于兩個内項。這叫做《比例的基本性質》
根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個比例中的另一個未知項。求比例中的未知項,叫做解比例
如: x:320=1:10 10x =320×1 x =320÷10 x =32
一、負數:
1、在熟悉的生活情境中初步認識負數,能正确的讀、寫正數和負數,知道0既不是正數也不是負數。
2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。
3、能借助數軸初步學會比較正數、0和負數之間的大小。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索并掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發展學生的空間觀念。
三、比例
1、理解比例的意義和基本性質,會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐标系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。
4、了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。
5、認識放大與縮小現象,能利用方格紙等形式按一定的比例将簡單圖形放大或縮小,體會圖形的相似。
6、滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙教育
四、統計
1、會綜合應用學過的統計知識,能從統計圖中準确提取統計信息,能夠正确解釋統計結果。
2、能根據統計圖提供的信息,做出正确的判斷或簡單預測。
五、數學廣角
1、經曆"抽屜原理"的探究過程,初步了解"抽屜原理",會用"抽屜原理"解決簡單的實際問題。
2、通過"抽屜原理"的靈活應用感受數學的魅力。
六、整理和複習
1、比較系統地掌握有關整數、小數、分數和百分數、負數、比和比例、方程的基礎知識。能比較熟練地進行整數、小數、分數的四則運算,能進行整數、小數加、減、乘、除的估算,會使用學過的簡便算法,合理、靈活地進行計算;會解學過的方程;養成檢查和驗算的習慣。
2、鞏固常用計量單位的表象,掌握所學單位間的進率,能夠進行簡單的改寫。
3、掌握所學幾何形體的特征;能夠比較熟練地計算一些幾何形體的周長、面積和體積,并能應用;鞏固所學的簡單的畫圖、測量等技能;鞏固軸對稱圖形的認識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉的認識;能用數對或根據方向和距離确定物體的位置,掌握有關比例尺的知識,并能應用。
4、掌握所學的統計初步知識,能夠看和繪制簡單的統計圖表,能夠根據數據做出簡單的判斷與預測,會求一些簡單事件的可能性,能夠解決一些計算平均數的實際問題。
5、進一步感受數學知識間的相互聯系,體會數學的作用;掌握所學的常見數量關系和解決問題的思考方法,能夠比較靈活地運用所學知識解決生活中一些簡單的實際問題。
小學數學所有公式彙編
每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形 C周長 S面積 a邊長 周長=(長 寬)×2 C=2(a b)
面積=長×寬 S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬 長×高 寬×高)×2 S=2(ab ah bh)
(2)體積=長×寬×高 V=abh
5 三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高 面積=底×高 s=ah
7 梯形
s面積 a上底 b下底 h高 面積=(上底 下底)×高÷2 s=(a b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積 底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民币單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長 寬)×2 C=(a b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底 下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
關注沈老師,會收到更多資料
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!