折線圖是排列在工作表的列或行中的數據可以繪制到折線圖中。折線圖可以顯示随時間(根據常用比例設置)而變化的連續數據,因此非常适用于顯示在相等時間間隔下數據的趨勢。(更多内容關注:Aubgbd)
import pandas as pdimport osimport matplotlib.pyplot as pltimport seaborn as snsplt.style.use('ggplot')importmatplotlibmatplotlib.rcParams['font.sans-serif'] = ['SimHei']matplotlib.rcParams['axes.unicode_minus']=False
seaborn.lineplot(x=None, y=None, hue=None, size=None, style=None, data=None,
palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator='mean', ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None,legend='brief',ax=None,**kwargs)
fmri = pd.read_csv('fmri.csv')
fmri[:5]
sns.lineplot(x="timepoint", y="signal", data=fmri
sns.lineplot(x="timepoint", y="signal",hue="region", style="event", data=fmri)
sns.lineplot(x="timepoint", y="signal",hue="event", style="event", markers="o", data=fmri)
import numpy as np, pandas as pd; plt.close("all")
index = pd.date_range("1 1 2000", periods=100,
freq="m", name="date")
data = np.random.randn(100, 4).cumsum(axis=0)
wide_df = pd.DataFrame(data, index, ["a", "b", "c", "d"])
ax = sns.lineplot(data=wide_df)
以上就是本期折線圖内容,下期我們分享分類數據圖seaborn.catplot的繪制方法。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!