tft每日頭條

 > 生活

 > 長方體的棱長總和用字母公式

長方體的棱長總和用字母公式

生活 更新时间:2025-01-02 01:43:10

長方體的棱長總和用字母公式(從長方體的頂點)1

一個長方體有8個點頂,12條棱,6個面。

若把頂點和面的數量相加,比棱的數量多2。

如果用分别用V,E,F表示一個多面體(要滿足一定的條件,在此不讨論),則有:

V-E F=2

這是歐拉定理。

用變與不變的思想來看歐拉定理,是說多面體是可以變化的,從而V,E,F都是可以變化的,但在變化的過程中,V-E F是一個不變量。

我們要讨論的問題的,一個平面上的、與歐拉定理相關的結論。

如下圖:

長方體的棱長總和用字母公式(從長方體的頂點)2

平面上有一些點,将這些點用線段連起來,可以得到一個圖,我們同樣讨論圖中的點、邊(線段)和面(封閉的區域)數。

以這個圖為例,有8個頂點,12條邊和5個面。

8 5-12=1

我們要來說明,一個這樣的圖,頂點數與面數的和,總是比邊數多1的。

(印象中一次全國性小學數學競賽中出過類似的題)

圖有無窮多種,情況非常複雜,如果能說明這個一般的結論也是正确的呢?

下面的說明也很機智。

對于任何一個圖,我們可以這樣做:

(1)通過添對角線的辦法,把每一個區域都變成三角形,如下圖:

長方體的棱長總和用字母公式(從長方體的頂點)3

容易發現,每添加這樣一條對角線,圖的頂點數沒有變,邊增加了一條,而一條邊把原來的一個面分成了兩個,也就是面也增加了一個。

這樣,頂點 面-邊的值就不會發生變化。

(2)我們現在要來減少三角形的個數。通過取掉一些邊達到目的。

如果一個三角形隻有一條邊在邊界上,就先取掉邊界上這條邊:

長方體的棱長總和用字母公式(從長方體的頂點)4

容易發現,少了一條邊,同時少了一個面。因此,頂點 面-邊的值不會發生變化。

我們再取掉一條:

長方體的棱長總和用字母公式(從長方體的頂點)5

同樣是減少一條邊和一個面。

這時,出現了一種三角形,它有兩條邊都在邊界上:

長方體的棱長總和用字母公式(從長方體的頂點)6

我們把這兩條邊界上的邊都去掉。

長方體的棱長總和用字母公式(從長方體的頂點)7

容易發現,減少兩條邊,一個面,一個頂點。頂點 面-邊的值不會發生變化。

(3)按一定的順序,這樣一個個三角形去掉,直到最後隻剩一個三角形。

此時:三個頂點,三條邊,一個面。點 面-邊=3 1-3=1。

因為在上述操作中,點 面-邊的值一直保持不變,所以原來的圖,同樣有:

點 面-邊=1

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved