三角函數的推導公式無論是在初中還是高中都會用到,尤其在高中,考試都會用到三角函數,無論是選擇填空還是應用題,三角函數占分都比較大,可以說如果你不懂三角函數公式推導你在高中就一定會吃虧,下面是為大家精心整理的三角函數公式大全,趕緊記下來吧!
銳角三角函數公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3 α)sin(π/3-α)
cos3α=4cosα·cos(π/3 α)cos(π/3-α)
tan3a = tan a · tan(π/3 a)· tan(π/3-a)
三倍角公式推導
sin3a
=sin(2a a)
=sin2acosa cos2asina
輔助角公式
Asinα Bcosα=(A^2 B^2)^(1/2)sin(α t),其中
sint=B/(A^2 B^2)^(1/2)
cost=A/(A^2 B^2)^(1/2)
tant=B/A
Asinα Bcosα=(A^2 B^2)^(1/2)cos(α-t),tant=A/B
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1 cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1 cos(2α))
推導公式
tanα cotα=2/sin2α
tanα-cotα=-2cot2α
1 cos2α=2cos^2α
1-cos2α=2sin^2α
1 sinα=(sinα/2 cosα/2)^2
=2sina(1-sin²a) (1-2sin²a)sina
=3sina-4sin³a
cos3a
=cos(2a a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-sin²a)cosa
=4cos³a-3cosa
sin3a=3sina-4sin³a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60° sina)(sin60°-sina)
=4sina*2sin[(60 a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60° a)sin(60°-a)
cos3a=4cos³a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)²]
=4cosa(cos²a-cos²30°)
=4cosa(cosa cos30°)(cosa-cos30°)
=4cosa*2cos[(a 30°)/2]cos[(a-30°)/2]*{-2sin[(a 30°)/2]sin[(a-30°)/2]}
=-4cosasin(a 30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90° (60° a)]
=-4cosacos(60°-a)[-cos(60° a)]
=4cosacos(60°-a)cos(60° a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60° a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1 cosA);
cot(A/2)=sinA/(1-cosA)=(1 cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1 cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1 cos(a))
三角和
sin(α β γ)=sinα·cosβ·cosγ cosα·sinβ·cosγ cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α β γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α β γ)=(tanα tanβ tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
兩角和差
cos(α β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α β)=(tanα tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1 tanα·tanβ)
和差化積
sinθ sinφ = 2 sin[(θ φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ φ)/2] sin[(θ-φ)/2]
cosθ cosφ = 2 cos[(θ φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ φ)/2] sin[(θ-φ)/2]
tanA tanB=sin(A B)/cosAcosB=tan(A B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1 tanAtanB)
積化和差
sinαsinβ = [cos(α-β)-cos(α β)] /2
cosαcosβ = [cos(α β) cos(α-β)]/2
sinαcosβ = [sin(α β) sin(α-β)]/2
cosαsinβ = [sin(α β)-sin(α-β)]/2
誘導公式
sin(-α) = -sinα
cos(-α) = cosα
tan (—a)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2 α) = cosα
cos(π/2 α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π α) = -sinα
cos(π α) = -cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
誘導公式記背訣竅:奇變偶不變,符号看象限
萬能公式
sinα=2tan(α/2)/[1 tan^(α/2)]
cosα=[1-tan^(α/2)]/1 tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
其它公式
(1)(sinα)^2 (cosα)^2=1
(2)1 (tanα)^2=(secα)^2
(3)1 (cotα)^2=(cscα)^2
證明下面兩式,隻需将一式,左右同除(sinα)^2,第二個除(cosα)^2即可
(4)對于任意非直角三角形,總有
tanA tanB tanC=tanAtanBtanC
證:
A B=π-C
tan(A B)=tan(π-C)
(tanA tanB)/(1-tanAtanB)=(tanπ-tanC)/(1 tanπtanC)
整理可得
tanA tanB tanC=tanAtanBtanC
得證
同樣可以得證,當x y z=nπ(n∈Z)時,該關系式也成立
由tanA tanB tanC=tanAtanBtanC可得出以下結論
(5)cotAcotB cotAcotC cotBcotC=1
(6)cot(A/2) cot(B/2) cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2 (cosB)^2 (cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2 (sinB)^2 (sinC)^2=2 2cosAcosBcosC
(9)sinα sin(α 2π/n) sin(α 2π*2/n) sin(α 2π*3/n) …… sin[α 2π*(n-1)/n]=0
cosα cos(α 2π/n) cos(α 2π*2/n) cos(α 2π*3/n) …… cos[α 2π*(n-1)/n]=0 以及
sin^2(α) sin^2(α-2π/3) sin^2(α 2π/3)=3/2
tanAtanBtan(A B) tanA tanB-tan(A B)=0
三角函數看似有很多,很複雜,但隻要掌握了三角函數的本質及内部規律就能夠發現三角函數各個公式之間有着強大的聯系,希望大家一定要掌握,并且靈活合理運用哦。
,
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!