tft每日頭條

 > 生活

 > 平方根入門教學

平方根入門教學

生活 更新时间:2025-01-16 13:47:23

平方根入門教學?初中數學中,平方根是學生們首先接觸的根式,後面還有立方根,四次方根,五次方根,以及大學要用的n次方根平方根和立方根是基礎,初中生要能正确理解方根的意義,能夠熟練說出一個數的方根,下面我們就來說一說關于平方根入門教學?我們一起去了解并探讨一下這個問題吧!

平方根入門教學(初學平方根)1

平方根入門教學

初中數學中,平方根是學生們首先接觸的根式,後面還有立方根,四次方根,五次方根,以及大學要用的n次方根。平方根和立方根是基礎,初中生要能正确理解方根的意義,能夠熟練說出一個數的方根。

今天,我主要想和大家先來認識一下平方根。

什麼是平方根呢?這個概念與平方有關,我們知道一一

1^2=1, 2^2=4, 3^2=9, 4^2=16,

(-1)^2=1,(-2)^2=4, (-3)^2=9, (-4)^2=16。

現在我如果問你,什麼數的平方等于1呢?即(?)^2=1,你肯定會有兩個答案,即1和-1,同樣平方為4的數是2和-2,平方是9的數有3和-3,平方等于16的數為4和-4。像(?)^2=1,(?)^2=4,(?)^2=9,(?)^2=16等這些問題,我們稱為求平方根,即求1的平方根,4的平方根,9的平方根,16的平方根等。

如何用字母來表示平方根呢?比如一個數的平方為a,即(?)^2=a,我們把?用x換取,即有ⅹ^2=a,這裡x就叫做a的平方根,可以寫作x=±√a,當然,a就是x的平方數,由于數的平方是個非負數,所以a是非負數,即a≥0。

看上面這個例題,求9的平方根,即求±√9的值,根據平方根的概念,有(?)^2=9,顯然?可為 3和-3,即±3,所以±√9=±3,故9的平方根是±3,答案選C。

根據平方根的概念,可易知,平方根有下列性質:①一個正數的平方根有兩個,它們互為相反數,②負數沒有平方根,③0的平方根為0。

特别地,我們把一個正數的那個正的平方根叫做算術平方根,"算術"一詞來源于小學的算術題,那時還沒有引進負數。

a的算術平方根可寫作√a,這裡a≥0,當然√a≥0,要特别注意,0的算術平方根為0。

初學平方根應注意它與算術平方根的的區别與聯系,能正确說出一個數的平方根和算術平方根。

例如,①16的平方根是±√16=±4,而16的算術平方根是√16=4。

②9的平方根是±3,而9的算術平方根是3。

③-9的平方根不存在(即沒有),同樣-9的算術平方根也不存在。

④0的平方根是0,0的算術平方根也是0。

看上面的例1,由平方根的概念和性質可知被開方數為非負數,即x-3≥0,再由分式的分母不能為0,即有√(x-3)≠0,也就是x-3≠0,所以有x-3>0,即x>3。

下面再看一道填空計算題:

①√4-5=_,②±√25=_,③√16的平方根為_。

分析:本題意在把握平方根和算術平方根的區别,①中√4是指4的算術平方根即為2,所以√4-5=2-5=-3,②中±√25是求25的平方根,有兩個,是一對相反數,即±5,③中求√16的平方根,要正确理解平方根的概念,√16的平方根是±√(√16),而√16=4(這顯然是求16的算術平方根的),所以±√(√16)=±√4=±2。

下面這道題,據說80%的人都算不對,你敢去挑戰嗎?

計算:①√81的平方根是_____,

②√36=_____,

③-√16=_____。

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved