tft每日頭條

 > 生活

 > 均勻分布最大值的密度函數

均勻分布最大值的密度函數

生活 更新时间:2024-11-30 10:21:32

均勻分布最大值的密度函數(概率密度函數與累積分布函數)1

概率質量函數與累積分布函數-連續

當累積分布函數為連續函數時候, 概率質量函數 PMF 不再适用, 因此就需要用積分(概率密度函數PDF)來計算概率. 在概率中, PDF 是 CDF 的微分, CDF 是 PDF 的積分, 觀察下面以标準正态分布為例的 PDF 與 CDF 關系動畫:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)2

與PMF不同, 概率密度函數(Probability Density Function, PDF) f(x)與 dx的乘積約等于概率, 即 f(x) dx ≈ P(x<X<=x dx), 觀察下圖中的淺紅色陰影部分, 如果将該範圍内的PDF積分, 就會得到該範圍的概率.

均勻分布最大值的密度函數(概率密度函數與累積分布函數)3

均勻分布(Uniform Distribution)

連續型随機變量 X 具有如下的概率密度函數,則稱 X 服從[a,b]上的均勻分布(uniform distribution),記作 X ~ U(a, b)

均勻分布最大值的密度函數(概率密度函數與累積分布函數)4

均勻分布的 PDF 和 CDF 如下:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)5

正态分布(Normal Distribution)

均勻分布最大值的密度函數(概率密度函數與累積分布函數)6

正态分布是在統計以及許多統計測試中最廣泛應用的一類分布, 很多自然現象都服從正态分布. 若随機變量 X 服從一個位置參數為 μ 、尺度參數為 σ 的正态分布,記為:X ~ N(μ, σ²)

均勻分布最大值的密度函數(概率密度函數與累積分布函數)7

正态分布的數學期望值或期望值 μ 等于位置參數,決定了分布的位置;其方差 σ²的開平方或标準差 σ 等于尺度參數,決定了分布的幅度。觀察下面動圖:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)8

μ=0 時, 繪制不同 σ 值的概率密度函數,同時顯示 CDF 等高線:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)9

指數分布(Exponential Distribution)

指數分布可以用來表示獨立随機事件發生的時間間隔, 比如旅客進入機場的時間間隔、打進客服中心電話的時間間隔等等. 若随機變量 X 服從參數為 λ 的指數分布,則記為 X~Exp(λ) . 其中 λ > 0 是分布的一個參數, 即每單位時間發生該事件的次數. 指數分布的區間是 [0,∞). 觀察下面指數分布的 PDF 與 CDF 動圖:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)10

繪制不同 λ 值(0.1~5)的概率密度函數,同時顯示 CDF 等高線, 觀察下面動畫:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)11

伽瑪分布(Gamma Distribution)

伽瑪分布有兩個: 參數 α 稱為形狀參數,β 稱為尺度參數, α>0, β>0.

均勻分布最大值的密度函數(概率密度函數與累積分布函數)12

在 CDF 等高線下,當 α=2 時, 不同 β 值的概率密度函數, 觀察下面動畫:

均勻分布最大值的密度函數(概率密度函數與累積分布函數)13

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved