1、雙曲線是定義為平面交截直角圓錐面的兩半的一類圓錐曲線。在數學中,雙曲線(多重雙曲線或雙曲線)是位于平面中的一種平滑曲線,由其幾何特性或其解決方案組合的方程定義。雙曲線有兩片,稱為連接的組件或分支,它們是彼此的鏡像,類似于兩個無限弓。雙曲線是由平面和雙錐相交形成的三種圓錐截面之一。(其他圓錐部分是抛物線和橢圓,圓是橢圓的特殊情況)如果平面與雙錐的兩半相交,但不通過錐體的頂點,則圓錐曲線是雙曲線。
2、雙曲線的幾何性質分為兩大類。
(1)位置關系:中心是兩焦點,兩頂點的中點:焦點在實軸上;實軸與虛軸垂直;雙曲線有兩條過中心的漸近線;準線與實軸垂直。
(2)數量關系:實軸長、虛軸長、焦距分别為2a,2b,2c。兩準線之間距離為﹔焦準距(焦參數)。
3、雙曲線的每個分支具有從雙曲線的中心進一步延伸的更直(較低曲率)的兩個臂。對角線對面的手臂,一個從每個分支,傾向于一個共同的線,稱為這兩個臂的漸近線。所以有兩個漸近線,其交點位于雙曲線的對稱中心,這可以被認為是每個分支反射以形成另一個分支的鏡像點。在曲線{displaystylef(x)=1/x}f(x)=1/x的情況下,漸近線是兩個坐标軸。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!