1、配方法;所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成—個或幾個多項式正整數次幂的和形式。通過配方解決數學問題的方法叫配方法。
2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起着重要的作用。因式分解的方法有許多,中學課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。
3、換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較複雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、構造法;在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起—座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
5、反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正确的推理,導緻矛盾,從而否定相反的假設,達到肯定原命題正确的一種方法。反證法可以分為兩種:一種是相反的結論隻有一種,另一種是相反的結論有無數種。前者需要把相反的結論推翻,後者隻要舉出一個反例,就達到了證明的目的。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!