tft每日頭條

 > 生活

 > 金屬材料的使用性能是哪幾種

金屬材料的使用性能是哪幾種

生活 更新时间:2024-11-27 18:48:44

金屬材料的性能決定着材料的适用範圍及應用的合理性。金屬材料的性能主要分為四個方面,即:機械性能、化學性能、物理性能、工藝性能。

金屬材料的使用性能是哪幾種(金屬材料的四大性能)1

一.機械性能 金屬在一定溫度條件下承受外力(載荷)作用時,抵抗變形和斷裂的能力稱為金屬材料的機械性能(也稱為力學性能)。金屬材料承受的載荷有多種形式,它可以是靜态載荷,也可以是動态載荷,包括單獨或同時承受的拉伸應力、壓應力、彎曲應力、剪切應力、扭轉應力,以及摩擦、振動、沖擊等等,因此衡量金屬材料機械性能的指标主要有以下幾項: 1.強度 這是表征材料在外力作用下抵抗變形和破壞的最大能力,可分為抗拉強度極限(σb)、抗彎強度極限(σbb)、抗壓強度極限(σbc)等。由于金屬材料在外力作用下從變形到破壞有一定的規律可循,因而通常采用拉伸試驗進行測定,即把金屬材料制成一定規格的試樣,在拉伸試驗機上進行拉伸,直至試樣斷裂,測定的強度指标主要有: (1)強度極限:材料在外力作用下能抵抗斷裂的最大應力,一般指拉力作用下的抗拉強度極限,以σb表示,如拉伸試驗曲線圖中最高點b對應的強度極限,常用單位為兆帕(MPa),換算關系有:1MPa=1N/m2=(9.8)-1kgf/mm2或1kgf/mm2=9.8MPa。 (2)屈服強度極限:金屬材料試樣承受的外力超過材料的彈性極限時,雖然應力不再增加,但是試樣仍發生明顯的塑性變形,這種現象稱為屈服,即材料承受外力到一定程度時,其變形不再與外力成正比而産生明顯的塑性變形。 産生屈服時的應力稱為屈服強度極限,用σs表示,相應于拉伸試驗曲線圖中的S點稱為屈服點。對于塑性高的材料,在拉伸曲線上會出現明顯的屈服點,而對于低塑性材料則沒有明顯的屈服點,從而難以根據屈服點的外力求出屈服極限。因此,在拉伸試驗方法中,通常規定試樣上的标距長度産生0.2%塑性變形時的應力作為條件屈服極限,用σ0.2表示。 屈服極限指标可用于要求零件在工作中不産生明顯塑性變形的設計依據。但是對于一些重要零件還考慮要求屈強比(即σs/σb)要小,以提高其安全可靠性,不過此時材料的利用率也較低了。 (3)彈性極限:材料在外力作用下将産生變形,但是去除外力後仍能恢複原狀的能力稱為彈性。金屬材料能保持彈性變形的最大應力即為彈性極限,相應于拉伸試驗曲線圖中的e點,以σe表示,單位為兆帕(MPa):σe=Pe/Fo式中Pe為保持彈性時的最大外力(或者說材料最大彈性變形時的載荷)。 (4)彈性模數:這是材料在彈性極限範圍内的應力σ與應變δ(與應力相對應的單位變形量)之比,用E表示,單位兆帕(MPa):E=σ/δ=tgα式中α為拉伸試驗曲線上o-e線與水平軸o-x的夾角。彈性模數是反映金屬材料剛性的指标(金屬材料受力時抵抗彈性變形的能力稱為剛性)。 2.塑性 金屬材料在外力作用下産生永久變形而不破壞的最大能力稱為塑性,通常以拉伸試驗時的試樣标距長度延伸率δ(%)(延伸率δ=[(L1-L0)/L0]x100%)和試樣斷面收縮率ψ(%)表示,這是拉伸試驗時試樣拉斷後将試樣斷口對合起來後的标距長度L1與試樣原始标距長度L0之差(增長量)與L0之比。 在實際試驗時,同一材料但是不同規格(直徑、截面形狀-例如方形、圓形、矩形以及标距長度)的拉伸試樣測得的延伸率會有不同,因此一般需要特别加注,例如最常用的圓截面試樣,其初始标距長度為試樣直徑5倍時測得的延伸率表示為δ5,而初始标距長度為試樣直徑10倍時測得的延伸率則表示為δ10。 斷面收縮率ψ=[(F0-F1)/F0]x100%,這是拉伸試驗時試樣拉斷後原橫截面積F0與斷口細頸處最小截面積F1之差(斷面縮減量)與F0之比。實用中對于最常用的圓截面試樣通常可通過直徑測量進行計算:ψ=[1-(D1/D0)2]x100%,式中:D0-試樣原直徑;D1-試樣拉斷後斷口細頸處最小直徑。δ與ψ值越大,表明材料的塑性越好。 3.韌性 金屬材料在沖擊載荷作用下抵抗破壞的能力稱為韌性。通常采用沖擊試驗,即用一定尺寸和形狀的金屬試樣在規定類型的沖擊試驗機上承受沖擊載荷而折斷時,斷口上單位橫截面積上所消耗的沖擊功表征材料的韌性:αk=Ak/F單位J/cm2或Kg·m/cm2,1Kg·m/cm2=9.8J/cm2αk稱作金屬材料的沖擊韌性,Ak為沖擊功,F為斷口的原始截面積。 疲勞強度極限金屬材料在長期的反複應力作用或交變應力作用下(應力一般均小于屈服極限強度σs),未經顯著變形就發生斷裂的現象稱為疲勞破壞或疲勞斷裂,這是由于多種原因使得零件表面的局部造成大于σs甚至大于σb的應力(應力集中),使該局部發生塑性變形或微裂紋,随着反複交變應力作用次數的增加,使裂紋逐漸擴展加深(裂紋尖端處應力集中)導緻該局部處承受應力的實際截面積減小,直至局部應力大于σb而産生斷裂。

金屬材料的使用性能是哪幾種(金屬材料的四大性能)2

二.化學性能 金屬與其他物質引起化學反應的特性稱為金屬的化學性能。在實際應用中主要考慮金屬的抗蝕性、抗氧化性(又稱作氧化抗力,這是特别指金屬在高溫時對氧化作用的抵抗能力或者說穩定性),以及不同金屬之間、金屬與非金屬之間形成的化合物對機械性能的影響等等。在金屬的化學性能中,特别是抗蝕性對金屬的腐蝕疲勞損傷有着重大的意義。 三.物理性能金屬的物理性能主要考慮:(1)密度(比重):ρ=P/V單位克/立方厘米或噸/立方米,式中P為重量,V為體積。在實際應用中,除了根據密度計算金屬零件的重量外,很重要的一點是考慮金屬的比強度(強度σb與密度ρ之比)來幫助選材,以及與無損檢測相關的聲學檢測中的聲阻抗(密度ρ與聲速C的乘積)和射線檢測中密度不同的物質對射線能量有不同的吸收能力等等。 (2)熔點:金屬由固态轉變成液态時的溫度,對金屬材料的熔煉、熱加工有直接影響,并與材料的高溫性能有很大關系。 (3)熱膨脹性。随着溫度變化,材料的體積也發生變化(膨脹或收縮)的現象稱為熱膨脹,多用線膨脹系數衡量,亦即溫度變化1℃時,材料長度的增減量與其0℃時的長度之比。熱膨脹性與材料的比熱有關。在實際應用中還要考慮比容(材料受溫度等外界影響時,單位重量的材料其容積的增減,即容積與質量之比),特别是對于在高溫環境下工作,或者在冷、熱交替環境中工作的金屬零件,必須考慮其膨脹性能的影響。 (4)磁性。能吸引鐵磁性物體的性質即為磁性,它反映在導磁率、磁滞損耗、剩餘磁感應強度、矯頑磁力等參數上,從而可以把金屬材料分成順磁與逆磁、軟磁與硬磁材料。 (5)電學性能。主要考慮其電導率,在電磁無損檢測中對其電阻率和渦流損耗等都有影響。

金屬材料的使用性能是哪幾種(金屬材料的四大性能)3

四.工藝性能 金屬對各種加工工藝方法所表現出來的适應性稱為工藝性能,主要有以下四個方面:(1)切削加工性能:反映用切削工具(例如車削、銑削、刨削、磨削等)對金屬材料進行切削加工的難易程度。 (2)可鍛性:反映金屬材料在壓力加工過程中成型的難易程度,例如将材料加熱到一定溫度時其塑性的高低(表現為塑性變形抗力的大小),允許熱壓力加工的溫度範圍大小,熱脹冷縮特性以及與顯微組織、機械性能有關的臨界變形的界限、熱變形時金屬的流動性、導熱性能等。 (3)可鑄性:反映金屬材料熔化澆鑄成為鑄件的難易程度,表現為熔化狀态時的流動性、吸氣性、氧化性、熔點,鑄件顯微組織的均勻性、緻密性,以及冷縮率等。 (4)可焊性:反映金屬材料在局部快速加熱,使結合部位迅速熔化或半熔化(需加壓),從而使結合部位牢固地結合在一起而成為整體的難易程度,表現為熔點、熔化時的吸氣性、氧化性、導熱性、熱脹冷縮特性、塑性以及與接縫部位和附近用材顯微組織的相關性、對機械性能的影響等。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved