對于很多同學一直沒明白這麼一個題,若f(x 1)是奇函數,為什麼f(-x 1)=-f(x 1)。總覺得是應該(x 1)吧都變為-的,為什麼不能當整體呢?
看下面的例題:
函數的自變量是x嗎?
從以上例題看出兩點:
1.f(x 1)為奇函數不等于f(x)為奇函數;反過來,f(x)為奇函數也不等于f(x 1)為奇函數。也就是說,f(x)為奇函數和f(x 1)為奇函數是兩回事。
通常情況下,如果沒有周期的話,f(x)和f(x 1)不太可能同時為奇函數,畢竟要平移一個單位。如果其中一個函數為奇函數,圖象關于(0,0)對稱,平移一個單位之後,對稱中心就不再是(0,0)了。
2.不管是f(x)還是f(x 1),函數的自變量始終是x。看上面的六個例子,是不是這樣?
如果承認第2點的事實,那麼根據奇函數的定義:自變量相反,則函數值相反。
所以f(x 1)為奇函數等價于f(-x 1)=-f(x 1)。
可以當作整體呢?
當然可以。
令x 1=t,則f(x 1)就轉化為f(t).那麼f(x 1)為奇函數是否意味着f(t)為奇函數呢?
如果你回答“是”,那就與我上面講的第1點矛盾。
也就是說,通過代換,你竟然可以把f(x 1)為奇函數變為f(x)為奇函數?
錯在哪裡呢?
腦中始終要有自變量的概念,說函數是否為奇偶函數之前,要确定哪個是自變量,即确定是關于哪個自變量的奇偶函數。
舉個例子就明白了。
當然,從圖象平移的角度更好理解。
f(-x 1)=-f(x 1)所表達的函數特征,也是圖象關于(1,0)對稱。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!