PVAR模型是用于面闆數據分析的VAR模型,即Panel-VAR。
本篇文章主要先介紹一下PVAR的模型結構以及相關的組成,文章結構如下
1.介紹pvar的數學結構式
2.介紹pvar的最優滞後階數(時間序列必經操作)
3.介紹pvar模型的穩定性檢驗
4.介紹格蘭傑因果檢驗(證明是A導緻B,而不是B導緻A)
5.介紹脈沖響應函數(将故事看脈沖反應函數)
6.介紹方差分解結果
接下來還會有幾篇接着講PVAR,主要是介紹PVAR如何進行實例操作。
判斷規則:
(1) 選擇 AIC, BIC 或 HQIC 值最小的模型
(2) 但三者不一緻時, BIC/HQIC 傾向于選擇比較精簡的模型AIC 傾向于選擇比較“豐滿”的模型。通常,BIC/HQIC 優于 AIC
(3) 有時也不能完全依賴上述準則, 需要做一些人為判斷
1.Levin et al. (2002) 指出,該方法允許不同截距和時間趨勢,異方差和高階序列相關,适合于中等維度(時間序列介于25~250 之間,截面數介于10~250 之間) 的面闆單位根檢驗。
對于研究宏觀經濟的人而言,單根通常都須考慮。
2.嚴格意義來講,面闆數據都是需要單位根檢驗的。但有時當時間期限較短、而截面較多的面闆數據(比如T=3、N=30),由于時間期間較短,趨勢一般不會很明顯,可以不進行單位根檢驗。
1.如果基于單位根檢驗的結果發現變量之間是同階單整的,那麼我們可以進行協整檢驗。協整檢驗是考察變量間長期均衡關系的方法。所謂的協整是指若兩個或多個非平穩的變量序列,其某個線性組合後的序列呈平穩性。此時我們稱這些變量序列間有協整關系存在。因此協整的要求或前提是同階單整。
2.含義:指兩個沒有因果關系的時間序列之間,基于一些其他的外在因素,推斷出因果關系。例如:事件C導緻事件A和事件B,如果在A和B之間進行回歸分析,則容易推斷出A和B之間存在因果關系的錯誤結論。
1.先做單位根檢驗,看變量序列是否平穩序列,若平穩,可構造回歸模型等經典計量經濟學模型;若非平穩,進行差分,當進行到第i次差分時序列平穩,則服從i階單整(注意趨勢、截距不同情況選擇,根據P值和原假設判定)。
2.若所有檢驗序列均服從同階單整,可構造VAR模型,做協整檢驗(注意滞後期的選擇),判斷模型内部變量間是否存在協整關系,即是否存在長期均衡關系。如果有,則可以構造VEC模型或進行Granger因果檢驗,檢驗變量之間“誰引起誰變化”,即三者之間的關系為因果關系。
1.格蘭傑因果不是真正的因果,是統計學意義上的因果關系
1.回歸檢驗式(因此不能是非平穩的,而且要通過協整檢驗)
2.單純的脈沖響應函數需要擾動項的協方差矩陣保證是對角陣才能保證eit的變化同時其他的同期擾動項不變化,所以需要正交化的沖擊反應函數。
1.脈沖響應函數反映了随機擾動項(随機誤差項)的沖擊對其他變量帶來的動态影響,是一種短、中期關系(可以統一說是短期關系),而協整檢驗反映的是變量之間的長期關系(為負),長期均衡關系的存在,就是把短期的不均衡逐漸拉回,也就是說短期存在着偏離的狀況, 脈沖體現對沖擊的反應 ,可能短期内會為負,也可為正,但短期過後要有上升趨勢。對應差分分解貢獻,如果 長期均衡存在負相關,相應的差分分解,在短期内是上升,随後貢獻率會出現緩慢下降趨勢。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!