tft每日頭條

 > 生活

 > 著名的數字悖論

著名的數字悖論

生活 更新时间:2024-11-17 06:27:23

著名的數字悖論(9個著名的數字悖論)1

“悖論”這個詞的意義比較豐富,它包括一切與人的直覺和日常經驗相矛盾的數學結論。那些結論會使我們驚訝無比。悖論主要有三種形式:1.一種論斷看起來好象肯定錯了,實際上卻是對的(佯謬);2.一種論斷看起來好象肯定對了,實際上卻錯了(似是而非);3.一系列理論看起來好象無懈可擊,卻導緻了邏輯上自相矛盾。

悖論有點象變戲法,人們看完以後,幾乎沒有一個不驚訝得馬上就想知道:“這套戲法是怎麼搞成的?”當把技巧告訴他後,他便不知不覺地被引進深奧而有趣的數學世界中。

著名的《科學美國人》雜志社編的《數學悖論奇景》中,有不少生動而奇妙的題目,下面幾則便選自其中。有的題目作了簡略的分析,有的隻提出問題,留侍讀者去思索。

1.唐·吉诃德悖論

小說《唐·吉诃德》裡描寫過一個國家,它有一條奇怪的法律,每個旅遊者都要回答一個問題:“你來這裡做什麼?”回答對了,一切都好辦;回答錯了,就要被絞死。

一天,有個旅遊者回答:“我來這裡是要被絞死。”

旅遊者被送到國王那裡。國王苦苦想了好久:他回答得是對還是錯?究竟要不要把他絞死。如果說他回答得對,那就不要絞死他——可這樣一來,他的回答又成了錯的了!如果說他回答錯了,那就要絞死他——但這恰恰又證明他回答對了。實在是左右為難!

2.梵學者的預言

一天,梵學者與他的女兒蘇耶發生了争論。

蘇椰:你是一個大騙子,爸爸。你根本不能預言未來。

學者:我肯定能。

蘇椰:不,你不能。我現在就可以證明它!

蘇椰在一張紙上寫了一些字,折起來,壓在水晶球下。她說:

“我寫了一件事,它在3點鐘前可能發生,也可能不發生。請你預言它究竟是不是會發生,在這張白卡片上寫下‘是’字或‘不’字。要是你寫錯了,你答應現在就買輛汽車給我,不要拖到以後好嗎?”

“好,一言為定。”學者在卡片上寫了一個字。

3點鐘時,蘇椰把水晶球下面的紙拿出來,高聲讀道:“在下午3點以前,你将寫一個‘不’字在卡片上。”

學者在卡片上寫的是“是”字,他預言錯了:“在下午3點以前,寫一個‘不’字在卡片上”這一件事并未發生。但如果他在卡片上寫的是“不”呢?也還錯!因為寫“不”就表示他預言卡片上的事不會發生,但它恰恰發生了——他在卡片上寫的就是一個‘不’字。

蘇椰笑了:“我想要一輛紅色的賽車,爸爸,要帶鬥形座的。”

3.意想不到的老虎

公主要和邁克結婚,國王提出一個條件:

“我親愛的,如果邁克打死這五個門後藏着的一隻老虎,你就可以和他結婚。邁克必須順次序開門,從1号門開始。他事先不知道哪個房間裡有老虎,隻有開了那扇門才知道。這隻老虎的出現将是料想不到的。”

邁克看着這些門,對自己說道:

“如果我打開了四個空房間的門,我就會知道老虎在第五個房間。可是,國王說我不能事先知道它在哪裡,所以老虎不可能在第五個房間。”

“五被排除了,所以老虎必然在前四個房間内。同樣的推理,老虎也不會在最後一個房間——第四間内。”

按同樣的理由推下去,邁克證明老虎不能在第三、第二和第一個房間。邁克十分快樂,他滿懷信心地去看門。使他驚駭的是,老虎從第二個房間跳了出來。

邁克的推理并沒有錯,但他失敗了。老虎的出現完全出乎意料,表明國王遵守了他的諾言。也許,邁克進行推理的本身就與國王關于老虎“料想不到”的條件發生了矛盾。迄今為止,邏輯學家對于邁克究竟錯在哪裡還末得到一緻意見。

4.錢包遊戲

史密斯教授和兩個學生一道吃午飯。教授說:“我來告訴你們一個新遊戲。把你們的錢包放在桌子上,我來數裡面的錢。錢少的人可以赢掉另一個錢包中的所有錢。”

學生甲想:“如果我的錢多,就會輸掉我這些錢;如果他的多,我就會赢多于我的錢。所以赢的要比輸的多,這個遊戲對我有利。”

同樣的道理,學生乙也認為這個遊戲對他有利。

請問,一個遊戲怎麼會對雙方都有利呢?

5.一塊錢哪兒去了?

一個唱片商店裡,賣30張老式硬唱片,一塊錢兩張;另外30張軟唱片是一塊錢三張。那天,這60張唱片賣光了。30張硬唱片收入15元,30張軟唱片收入10元,總共是25元。

第二天,老闆又拿出60張唱片。他想:“如果30張唱片是一塊錢賣兩張,30張是一塊錢賣三張,何不放在一起,兩塊錢賣5張呢?”這一天,60張唱片全按兩塊錢5張賣出去了。老闆點錢時才發現,隻賣得24元,而不是25元。

這一塊錢到哪兒去了呢?

6.驚人的編碼

外星的一位科學家基塔先生,來到地球收集人類的資料,遇到了赫爾曼博士。

赫爾曼:“你何不帶一套大英百科全書回去?這套書最全面地彙總了我們的所有知識。”

基塔:“可惜,我帶不走那麼重的東西。不過,我可以把整套百科全書編碼,然後隻要在這根金屬棒上作個标記,就代表了百科全書中的全部信息。”真是再簡單不過了!

基塔先生是怎樣做到的呢?

基塔:“我先把每個字母、數字、符号,都用一個數來代表,零用來隔開它們。例如cat一詞就編為3-0-1-0-22。我用高級袖珍計算機快速掃描,就能把百科全書的全部内容轉變為一個龐大的數字。前面加一個小數點,就使它變成了一個十進制的分數,例如0.2015015011……

基塔先生在金屬棒上找到了一個點,這個點将棒分為a和b兩段,而a/b剛好等于上面那個十進制分數值。

基塔:“回去後,測出a和b的值,就求出了它們的比值;根據編碼的規定,你們的百科全書就被破譯出來了。”

這樣,基塔離開地球時隻帶了一根金屬棒,而他卻已“滿載而歸”了!

7.不可逃遁的點

帕特先生沿着一條小路上山。他早晨七點動身,當晚七點到達山頂。第二天早晨沿同一小路下,晚上七點又回到山腳,遇見了拓撲學老師克萊因。

克萊因:“帕特,你可曾知道你今天下山時走過這樣一個地點,你通過這點的時刻恰好與你昨天上山時通過這點的時刻完全相同?”

帕特:“這絕不可能!我走路時快時慢,有時還停下來休息。”

克萊因:“當你開始下山時,設想你有一個替身同時開始登山,這個替身登山的過程同你昨天登山時完全相同。你和這個替身必定要相遇。我不能斷定你們在哪一點相遇,但一定會有這樣一點。……”

帕特明白了。你明白了嗎?

8.橡皮繩上的蠕蟲

橡皮繩長1公裡,一條蠕蟲在它的一端。蠕蟲以每秒1厘米的穩定速度沿橡皮繩爬行;而橡皮繩每過1秒鐘就拉長1公裡。如此下去,蠕蟲最後究竟會不會到達終點呢?

乍一想,随着橡皮繩的拉伸,蠕蟲離終點越來越遠了。但細心的讀者會想到:随着橡皮繩的每次拉伸,蠕蟲也向前挪了。

如果用數學公式表示,蠕蟲在第n秒未在橡皮繩上的位置,表示為整條繩的分數就是(推導過程從略):

當n足夠大(約為e100000)時,上式的值就超過了1,也就是說蠕蟲爬到了終點。

9.棘手的電燈

一盞電燈,用按鈕來開關。假定把燈擰開一分鐘,然後關掉半分鐘,再擰開1/4分鐘,再關掉1/8分鐘,如此往複,這一過程的末了恰好是兩分鐘。

那麼,在這一過程結束時,電燈是開着,還是關着?這個問題實在是難!

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved