一、貨币時間價值基礎知識
含義 |
貨币時間價值是指貨币經曆一定時間的投資和再投資所增加的價值,也稱為資金時間價值。 |
表示方式 |
在實務中,人們習慣使用相對數字表示,即用增加的價值占投入貨币的百分數來表示。 |
終值與現值的概念 |
1.終值又稱将來值,是現在一定量現金在未來某一時點上的價值,俗稱“本利和”,通常記作“F”。2.現值,是指未來某一時點上的一定量現金折合到現在的價值,俗稱“本金”,通常記作“P”。 |
利息計算方法 |
單利:隻對本金計算利息。複利:不僅要對本金計算利息,而且對前期的利息也要計算利息。 |
二、一次性款項的現值和終值
單利終值與現值 |
單利終值:F=P+P×i×n=P×(1+i×n) |
單利現值系數與單利終值系數互為倒數 |
現值的計算與終值的計算是互逆的,由終值計算現值的過程稱為“折現”。單利現值的計算公式為:P=F/(1+n×i) | ||
複利終值與現值 |
複利終值公式:F=P×(1+i)n其中(1+i)n稱為複利終值系數,用(F/P,i,n)表示 |
複利現值系數(P/F,i,n)與複利終值系數(F/P,i,n)互為倒數 |
複利現值P=F×(1+i)-n其中(1+i)-n稱為複利現值系數,用(P/F,i,n)表示 |
三、普通年金的終值與現值 (一)有關年金的相關概念 1.年金的含義 年金,是指等額、定期的系列收支。具有兩個特點:一是金額相等;二是時間間隔相等。
2.年金的種類
年金種類
(二)普通年金的計算 1.普通年金終值計算:
普通年金終值計算
2.普通年金現值計算
普通年金現值計算
【例題】為實施某項計劃,需要取得外商貸款1 000萬美元,經雙方協商,貸款利率為8%,按複利計息, 貸款分5年于每年年末等額償還。外商告知,他們已經算好,每年年末應歸還本金200萬美元, 支付利息80萬美元。要求, 核算外商的計算是否正确。
『正确答案』借款現值=1 000(萬美元) 還款現值=280×(P/A,8%,5)=1 118(萬美元) >1 000萬美元 外商計算錯誤。
3.年償債基金和年投資回收額的計算 ①償債基金的計算 簡單地說,如果是已知年金終值求年金,則屬于計算償債基金問題,即根據普通年金終值公式求解A(反向計算),這個A就是償債基金。 根據普通年金終值計算公式:
可得:
上式中:
是普通年金終值系數的倒數,稱償債基金系數,記作(A/F,i,n)。 【提示】這裡注意償債基金系數和年金終值系數是互為倒數的關系。 ②投資回收額的計算 如果已知年金現值求年金,則屬于計算投資回收額問題。即根據普通年金現值公式求解A,這個A就是投資回收額。計算公式如下:
上式中:
稱為投資回收系數,記作(A/P,i,n)。 【提示】投資回收系數與年金現值系數是互為倒數的關系。 【總結】系數間的關系
四、預付年金終值與現值 預付年金,是指每期期初等額收付的年金,又稱即付年金或期初年金。有關計算包括兩個方面: 1.預付年金終值計算 預付年金的終值,是指把預付年金每個等額A都換算成第n期期末的數值,再來求和。 有兩種計算方法: 方法一:F=A[(F/A,i,n+1)-1]
預付年金終值計算(一)
(1)在終值點加上1個A,按照n+1期的普通年金計算終值, (2)再把終值點上加的A減掉 。 【提示】預付年金終值系數與普通年金終值系數的關系:期數加1,系數減1 方法二:預付年金終值=普通年金終值×(1+i)。
預付年金終值計算(二)
(1)先計算期數為n-1的普通年金終值, (2)再将n-1時點上的終值×(1+i)算到最終n時點。 2.預付年金現值的計算 具體有兩種方法: 方法一:P=A[(P/A,i,n-1)+1]
預付年金現值計算(一)
【提示】預付年金現值系數與普通年金現值系數的關系:期數減1,系數加1 方法二:預付年金現值=普通年金現值×(1+i)
預付年金現值計算(二)
(1)向左側延長1期,則為普通年金,按n期的普通年金計算 (2)再把折算到 -1時點的年金現值 ×(1+i)折算到0時點(現值點)
【總結】
相關系數 |
關系 |
預付年金終值系數與普通年金終值系數 |
(1)期數加1,系數減1(2)預付年金終值系數= 普通年金終值系數×(1+i) |
預付年金現值系數與普通年金現值系數 |
(1)期數減1,系數加1(2)預付年金現值系數= 普通年金現值系數×(1+i) |
五、遞延年金 遞延年金,是指第一次等額收付發生在第二期或第二期以後的年金。圖示如下:
遞延年金
m:遞延期 n:連續支付期 1.遞延年金終值計算 計算遞延年金終值和計算普通年金終值類似。 F=A×(F/A,i,n) 【注意】遞延年金終值隻與連續收支期(n)有關,與遞延期(m)無關。 2.遞延年金現值的計算 【方法1】兩次折現
遞延年金現值計算(一)
計算公式如下: P=A(P/A,i,n)×(P/F,i,m)
【方法2】年金現值系數之差
遞延年金現值計算(二)
計算公式如下: P=A(P/A,i,m+n)-A(P/A,i,m)=A[(P/A,i,m+n)-(P/A,i,m)]
【例題】有一項年金,前3年無流入,後5年每年年初流入500萬元,假設年利率為10%,其現值為( )萬元。 A.1994.59 B.1565.68 C.1813.48 D.1423.21
『正确答案』B
『答案解析』遞延期為2,現值=500×(P/A,10%,5)×(P/F,10%,2)=500×3.791×0.826=1565.68
六、永續年金 永續年金,是指無限期等額收付的年金。 永續年金因為沒有終止期,所以隻有現值沒有終值。
永續年金
七、折現率、期間的推算
【例·計算題】現在向銀行存入20 000元,問年利率i為多少時,才能保證在以後9年中每年年末可以取出4 000元。
『正确答案』根據普通年金現值公式 20 000=4 000×(P/A,i,9) (P/A,i,9)=5 查表并用内插法求解。查表找出期數為9,年金現值系數最接近5的一大、一小兩個系數: (P/A,12%,9)=5.3282 (P/A,14%,9)=4.9464
内插法
八、報價利率、計息期利率和有效年利率——年内多次計息情況 1.含義 【例】某種債券面值1000元,半年付息一次,付息金額為100元。
利率計算
報價利率 |
報價利率是指銀行等金融機構提供的利率。在提供報價利率時,還必須同時提供每年的複利次數(或計息期的天數),否則意義是不完整的。 |
計息期利率 |
計息期利率是指借款人每期支付的利息與本金的百分比,它可以是年利率,也可以是每半年、每季度、每月或每日等。計息期利率=報價利率/每年複利次數 |
有效年利率 |
有效年利率,是指在按給定的計息期利率、每年複利次數計算利息時,能夠産生相同結果的每年複利一次的年利率,也稱等價年利率。 |
2.報價利率下終值和現值的計算 将報價利率(r)調整為計息期利率(r/m),将年數(n)調整為計息期數(m×n)
【例題】某企業于年初存入10萬元,在年利率10%、每半年複利計息一次的情況下,到第10年末,該企業能得到的本利和是多少?
『正确答案』F=P×(1+r/m) m×n=10×(1+10%÷2)20=26.53(萬元)
3.有效年利率的推算
式中,r:報價利率;m:每年複利次數;i:有效年利率 【公式推導】 (1)報價利率下終值的計算:
(2)如果有效年利率為i,則終值為:
(3)兩個式子相等,有:
整理後,有:
【例題】本金10萬元,投資8年,年利率6%,每半年複利1次,則8年末本利和是多少?
『正确答案』 計息期利率=3% 期數(複利次數)=8×2=16
或者:
F=10×(1+6.09%)8=160471(元)
【總結】
三個利率的換算 |
計息期利率=報價利率/年複利次數有效年利率
|
有效年利率與報價利率的比較關系 |
當m=1時,有效年利率=報價利率當m >1時,有效年利率 >報價利率當m <1時,有效年利率 <報價利率 |
九、連續複利問題簡介 如果每年複利次數m趨近于無窮,則這種情況下的複利稱為“連續複利”。 1.連續複利情況下的有效年利率
2.連續複利情況下的複利終值和現值計算 假設期數為t,則:
【例題】某項貸款本金1000元,利率為10%,若按連續複利計息,則第3年末的終值為多少?
『正确答案』 F=1 000×e10%×3=1 000×1.3499=1 349.9(元)
THE END
@森哥财稅
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!