1.常量與變量
在一個變化過程中,數值發生變化的量為變量,數值始終保持不變的量稱為常量
變量:①自變量;②因變量
2.函數(對應關系)
在一個變化過程中,如果有兩個變量x,y,對于x每一個确定的值,y都有唯一确定的值與之對應,x叫自變量, y叫因變量,y是x的函數
判斷函數的标準:一個或多個x對應一個y(一對一,多對一)
例2:判斷下列y是x的函數的有___________
3.函數的表示方法
①解析式法:例: y=4 x,y=|x|等
②列表法:
年份 |
人口(億) |
1984 |
10.34 |
1989 |
11.06 |
1999 |
12.52 |
2010 |
13.71 |
x(年份) |
1984 |
1989 |
1999 |
2010 |
y[人口(億)] |
10.34 |
11.06 |
12.52 |
13.71 |
③圖象法:在直角坐标系中用具體的圖象來表示函數
4.函數圖象
對于一個函數,如果把自變量與函數的每對對應值分别作為點的橫縱坐标,那麼平面内由這些點組成的圖形就是這個函數的圖象
例:畫出y=2x-1的圖象
描點法:
①列表(5點法)
x |
…… |
-2 |
-1 |
0 |
1 |
2 |
…… |
y |
…… |
-5 |
-3 |
-1 |
1 |
3 |
…… |
②描點
③連線
注:滿足解析式的點一定在圖象上,圖象上的點一定滿足解析式
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!