正交矩陣一定是可逆的。在矩陣論中,實數正交矩陣是方塊矩陣Q,它的轉置矩陣是它的逆矩陣。因此正交矩陣一定是可逆的。如果AAT=E(E為單位矩陣,AT表示“矩陣A的轉置矩陣”)或ATA=E,則n階實矩陣A稱為正交矩陣。
正交矩陣不一定是實矩陣。實正交矩陣(即該正交矩陣中所有元都是實數)可以看做是一種特殊的酉矩陣,但也存在一種複正交矩陣,這種複正交矩陣不是酉矩陣。
正交矩陣的逆是正交的,兩個正交矩陣的積是正交的。事實上,所有n×n正交矩陣的集合滿足群的所有公理。它是n(n−1)/2維的緊緻李群,叫做正交群并指示為O(n)。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!