tft每日頭條

 > 圖文

 > 換元法經典例題高一基本不等式

換元法經典例題高一基本不等式

圖文 更新时间:2025-01-21 08:49:06

換元法經典例題高一基本不等式?成立條件:一正、二定、三相等,我來為大家科普一下關于換元法經典例題高一基本不等式?下面希望有你要的答案,我們一起來看看吧!

換元法經典例題高一基本不等式(基本不等式典型例題)1

換元法經典例題高一基本不等式

成立條件:一正、二定、三相等。

一正:a>0,b>0;

二定:乘積為定值;

三相等:能否取到等号。

1

解析:本題考查基本不等式的知識點:;

滿足一正、二定、三相等的條件,所以本題,取得最小值時:,因為x>0,所以x=1時,取得最小值2。

2、當的最小值?

解析:本題考查基本不等式知識點:;

滿足一正、二定、三相等的條件,所以本題

取得最小值時:,因為x>2,所以x=,取得最小值。

3、當時,求的最小值?

解析:,=4,,sinx不可能取到2或者-2,所以滿足一正,二定,但是不滿足取等号條件;

所以本題使用對勾函數性質來解決:對勾函數f(x)=ax (ab>0),對勾函數是奇函數,關于原點對稱。

令t=sinx,,是對勾函數,在(0,1]上是減函數,所以最小值在t=1,即處取到,最小值為5。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关圖文资讯推荐

热门圖文资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved