一、平方根:(引入概念)
1、一般地,如果一個數的平方等于a,那麼這個數叫作a的平方根,也叫做a的二次方根。
2、求一個數的平方根的運算叫作開平方,開平方是平方運算的逆運算。(可以運用平方運算求一個數的平方根)
3、正數的正平方根叫作算術平方根,0的算術平方根為0.
歸納以上結論:一個正數有正、負兩個平方根,它們互為相反數;0的平方根為0;負數沒有平方根。
總結是一種好的方法
二、實數和無理數:
1、有理數:整數和分數(有限小數和無限循環小數)
于是,我們把無限不循環小數叫作無理數。
例如:兀是典型的無理數(#圓周率#)。
2、在數軸上表示的兩個實數,右邊的數一定比左邊的數大。
3、所有實數都可以在數軸上用點表示,即:實數和數軸上的點一 一對應。
總結一下:實數的範圍:有理數(整數和分數)和無理數(正無理數和負無理數)。
三、立方根:
1、一般地,如果一個數的立方等于a,那麼這個數叫作a的立方根,也叫做a的三次方根。
2、求一個數的立方根的運算叫作開立方。(其中,根指數3不能不寫)
歸納一下:一個正數有一個正的立方根;一個負數有一個負的立方根;0的立方根是0。
此時,需要記憶一下
最後,來一點幹貨(實數運算技巧):
(先算乘方和開方,再算乘除,後加減。若遇括号,優先服務。)
問一句:你掌握了嗎?請在評論區留言。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!