tft每日頭條

 > 生活

 > 溫度傳感器的基本測量方法

溫度傳感器的基本測量方法

生活 更新时间:2024-09-03 14:18:25

溫度傳感器(temperature transducer)是指能感受溫度并轉換成可用輸出信号的傳感器。溫度傳感器是溫度測量儀表的核心部分,品種繁多。按測量方式可分為接觸式和非接觸式兩大類,按照傳感器材料及電子元件特性分為熱電阻和熱電偶兩類。

溫度傳感器的基本測量方法(溫度傳感器基礎知識解析)1

主要分類

接觸式

接觸式溫度傳感器的檢測部分與被測對象有良好的接觸,又稱溫度計。

溫度計通過傳導或對流達到熱平衡,從而使溫度計的示值能直接表示被測對象的溫度。

溫度傳感器的基本測量方法(溫度傳感器基礎知識解析)2

一般測量精度較高。在一定的測溫範圍内,溫度計也可測量物體内部的溫度分布。但對于運動體、小目标或熱容量很小的對象則會産生較大的測量誤差,常用的溫度計有雙金屬溫度計、玻璃液體溫度計、壓力式溫度計、電阻溫度計、熱敏電阻和溫差電偶等。它們廣泛應用于工業、農業、商業等部門。在日常生活中人們也常常使用這些溫度計。随着低溫技術在國防工程、空間技術、冶金、電子、食品、醫藥和石油化工等部門的廣泛應用和超導技術的研究,測量120K以下溫度的低溫溫度計得到了發展,如低溫氣體溫度計、蒸汽壓溫度計、聲學溫度計、順磁鹽溫度計、量子溫度計、低溫熱電阻和低溫溫差電偶等。低溫溫度計要求感溫元件體積小、準确度高、複現性和穩定性好。利用多孔高矽氧玻璃滲碳燒結而成的滲碳玻璃熱電阻就是低溫溫度計的一種感溫元件,可用于測量1.6~300K範圍内的溫度。

非接觸式

它的敏感元件與被測對象互不接觸,又稱非接觸式測溫儀表。這種儀表可用來測量運動物體、小目标和熱容量小或溫度變化迅速(瞬變)對象的表面溫度,也可用于測量溫度場的溫度分布。

最常用的非接觸式測溫儀表基于黑體輻射的基本定律,稱為輻射測溫儀表。

溫度傳感器的基本測量方法(溫度傳感器基礎知識解析)3

輻射測溫法包括亮度法(見光學高溫計)、輻射法(見輻射高溫計)和比色法(見比色溫度計)。各類輻射測溫方法隻能測出對應的光度溫度、輻射溫度或比色溫度。隻有對黑體(吸收全部輻射并不反射光的物體)所測溫度才是真實溫度。如欲測定物體的真實溫度,則必須進行材料表面發射率的修正。而材料表面發射率不僅取決于溫度和波長,而且還與表面狀态、塗膜和微觀組織等有關,因此很難精确測量。在自動化生産中往往需要利用輻射測溫法來測量或控制某些物體的表面溫度,如冶金中的鋼帶軋制溫度、軋輥溫度、鍛件溫度和各種熔融金屬在冶煉爐或坩埚中的溫度。在這些具體情況下,物體表面發射率的測量是相當困難的。對于固體表面溫度自動測量和控制,可以采用附加的反射鏡使與被測表面一起組成黑體空腔。附加輻射的影響能提高被測表面的有效輻射和有效發射系數。利用有效發射系數通過儀表對實測溫度進行相應的修正,最終可得到被測表面的真實溫度。最為典型的附加反射鏡是半球反射鏡。球中心附近被測表面的漫射輻射能受半球鏡反射回到表面而形成附加輻射,從而提高有效發射系數式中ε為材料表面發射率,ρ為反射鏡的反射率。

溫度傳感器的基本測量方法(溫度傳感器基礎知識解析)4

至于氣體和液體介質真實溫度的輻射測量,則可以用插入耐熱材料管至一定深度以形成黑體空腔的方法。通過計算求出與介質達到熱平衡後的圓筒空腔的有效發射系數。在自動測量和控制中就可以用此值對所測腔底溫度(即介質溫度)進行修正而得到介質的真實溫度。

非接觸測溫優點:測量上限不受感溫元件耐溫程度的限制,因而對最高可測溫度原則上沒有限制。對于1800℃以上的高溫,主要采用非接觸測溫方法。随着紅外技術的發展,輻射測溫 逐漸由可見光向紅外線擴展,700℃以下直至常溫都已采用,且分辨率很高。

工作原理

金屬膨脹原理設計的傳感器

金屬在環境溫度變化後會産生一個相應的延伸,因此傳感器可以以不同方式對這種反應進行信号轉換。

雙金屬片式傳感器

雙金屬片由兩片不同膨脹系數的金屬貼在一起而組成,随着溫度變化,材料A比另外一種金屬膨脹程度要高,引起金屬片彎曲。彎曲的曲率可以轉換成一個輸出信号。

雙金屬杆和金屬管傳感器

随着溫度升高,金屬管(材料A)長度增加,而不膨脹鋼杆(金屬B)的長度并不增加,這樣由于位置的改變,金屬管的線性膨脹就可以進行傳遞。反過來,這種線性膨脹可以轉換成一個輸出信号。

液體和氣體的變形曲線設計的傳感器

在溫度變化時,液體和氣體同樣會相應産生體積的變化。

多種類型的結構可以把這種膨脹的變化轉換成位置的變化,這樣産生位置的變化輸出(電位計、感應偏差、擋流闆等等)。

電阻傳感

金屬随着溫度變化,其電阻值也發生變化。

對于不同金屬來說,溫度每變化一度,電阻值變化是不同的,而電阻值又可以直接作為輸出信号。

電阻共有兩種變化類型

正溫度系數

溫度升高 = 阻值增加

溫度降低 = 阻值減少

負溫度系數

溫度升高 = 阻值減少

溫度降低 = 阻值增加

熱電偶傳感

熱電偶由兩個不同材料的金屬線組成,在末端焊接在一起。再測出不加熱部位的環境溫度,就可以準确知道加熱點的溫度。由于它必須有兩種不同材質的導體,所以稱之為熱電偶。不同材質做出的熱電偶使用于不同的溫度範圍,它們的靈敏度也各不相同。熱電偶的靈敏度是指加熱點溫度變化1℃時,輸出電位差的變化量。對于大多數金屬材料支撐的熱電偶而言,這個數值大約在5~40微伏/℃之間。

由于熱電偶溫度傳感器的靈敏度與材料的粗細無關,用非常細的材料也能夠做成溫度傳感器。也由于制作熱電偶的金屬材料具有很好的延展性,這種細微的測溫元件有極高的響應速度,可以測量快速變化的過程。

選用注意

1、被測對象的溫度是否需記錄、報警和自動控制,是否需要遠距離測量和傳送;

2、測溫範圍的大小和精度要求;

3、測溫元件大小是否适當;

4、在被測對象溫度随時間變化的場合,測溫元件的滞後能否适應測溫要求;

5、被測對象的環境條件對測溫元件是否有損害;

6、價格如保,使用是否方便。

主要用途

溫度是表征物體冷熱程度的物理量,是工農業生産過程中一個很重要而普遍的測量參數。溫度的測量及控制對保證産品質量、提高生産效率、節約能源、生産安全、促進國民經濟的發展起到非常重要的作用。由于溫度測量的普遍性,溫度傳感器的數量在各種傳感器中居首位,約占50%。

溫度傳感器是通過物體随溫度變化而改變某種特性來間接測量的。不少材料、元件的特性都随溫度的變化而變化,所以能作溫度傳感器的材料相當多。溫度傳感器随溫度而引起物理參數變化的有:膨脹、電阻、電容、而電動勢、磁性能、頻率、光學特性及熱噪聲等等。随着生産的發展,新型溫度傳感器還會不斷湧現。

由于工農業生産中溫度測量的範圍極寬,從零下幾百度到零上幾千度,而各種材料做成的溫度傳感器隻能在一定的溫度範圍内使用。

溫度傳感器與被測介質的接觸方式分為兩大類:接觸式和非接觸式。接觸式溫度傳感器需要與被測介質保持熱接觸,使兩者進行充分的熱交換而達到同一溫度。這一類傳感器主要有電阻式、熱電偶、PN結溫度傳感器等。非接觸式溫度傳感器無需與被測介質接觸,而是通過被測介質的熱輻射或對流傳到溫度傳感器,以達到測溫的目的。這一類傳感器主要有紅外測溫傳感器。這種測溫方法的主要特點是可以測量運動狀态物質的溫度(如慢速行使的火車的軸承溫度,旋轉着的水泥窯的溫度)及熱容量小的物體(如集成電路中的溫度分布)。

應用領域

溫度傳感器是最早開發,應用最廣的一類傳感器。溫度傳感器的市場份額大大超過了其他的傳感器。從17世紀初人們開始利用溫度進行測量。在半導體技術的支持下,本世紀相繼 開發了半導體熱電偶傳感器、PN結溫度傳感器和集成溫度傳感器。

兩種不同材質的導體,如在某點互相連接在一起,對這個連接點加熱,在它們不加熱的部位就會出現電位差。這個電位差的數值與不加熱部位測量點的溫度有關,和這兩種導體的材質有關。這種現象可以在很寬的溫度範圍内出現,如果精确測量這個電位差,再測出不 加熱部位的環境溫度,就可以準确知道加熱點的溫度。由于它必須有兩種不同材質的導體,所以稱之為“熱電偶”。不同材質做出的熱電偶使用于不同的溫度範圍,它們的靈敏度 也各不相同。

熱電偶傳感器有自己的優點和缺陷,它靈敏度比較低,容易受到環境幹擾信号的影響,也容易受到前置放大器溫度漂移的影響,因此不适合測量微小的溫度變化。由于熱電偶 溫度傳感器的靈敏度與材料的粗細無關。

該内容是雲漢芯城小編通過網絡搜集資料整理而成,如果你還想了解更多關于電子元器件的相關知識及電子元器件行業實時市場信息,敬請關注微信公衆号 【雲漢芯城】。

(免責聲明:素材來自網絡,由雲漢芯城小編搜集網絡資料編輯整理,如有問題請聯系處理!)

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved