►高等數學
一、函數、極限、連續
考試内容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性複合函數、反函數、分段函數和隐函數基本初等函數的性質及其圖形初等函數函數關系的建立
數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:
函數連續的概念函數間斷點的類型初等函數的連續性閉區間上連續函數的性質
考試要求
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解複合函數及分段函數的概念,了解反函數及隐函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系.
6.掌握極限的性質及四則運算法則.
7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9.理解函數連續性的概念(含左連續與右連續),會判别函數間斷點的類型.
10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.
二、一元函數微分學
考試内容
導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法線導數和微分的四則運算基本初等函數的導數複合函數、反函數、隐函數以及參數方程所确定的函數的微分法高階導數一階微分形式的不變性微分中值定理洛必達(L’Hospital)法則函數單調性的判别函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑
考試要求
1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.
2.掌握導數的四則運算法則和複合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.會求分段函數的導數,會求隐函數和由參數方程所确定的函數以及反函數的導數.
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.
6.掌握用洛必達法則求未定式極限的方法.
7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.
9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑。
三、億元函數積分學
考試内容
原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數及其導數牛頓—萊布尼茨公式不定積分和定積分的換元積分法與分部積分法有理函數、三角函數的有理式和簡單無理函數的積分反常(廣義)積分定積分的應用
考試要求
1.理解原函數的概念,理解不定積分和定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.
3.會求有理函數、三角函數有理式和簡單無理函數的積分.
4.理解積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式.
5.了解反常積分的概念,會計算反常積分.
6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值.
四、向量代數和空間解析幾何
考試内容
向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐标表達式及其運算單位向量方向數與方向餘弦曲面方程和空間曲線方程的概念平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐标面上的投影曲線方程
考試要求
1.理解空間直角坐标系,理解向量的概念及其表示.
2.掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件.
3.理解單位向量、方向數與方向餘弦、向量的坐标表達式,掌握用坐标表達式進行向量運算的方法.
4.掌握平面方程和直線方程及其求法.
5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等))解決有關問題.
6.會求點到直線以及點到平面的距離.
7.了解曲面方程和空間曲線方程的概念.
8.了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉曲面的方程.
9.了解空間曲線的參數方程和一般方程.了解空間曲線在坐标平面上的投影,并會求該投影曲線的方程.
五、多元函數微分學
考試内容
多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件
多元複合函數、隐函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用
考試要求
1.理解多元函數的概念,理解二元函數的幾何意義.
2.了解二元函數的極限與連續的概念以及有界閉區域上連續函數的性質.
3.理解多元函數偏導數和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.
4.理解方向導數與梯度的概念,并掌握其計算方法.
5.掌握多元複合函數一階、二階偏導數的求法.
6.了解隐函數存在定理,會求多元隐函數的偏導數.
7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.
8.了解二元函數的二階泰勒公式.
9.理解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.
六、多元函數積分學
考試内容
二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用
考試要求
1.理解二重積分、三重積分的概念,了解重積分的性質,了解二重積分的中值定理.
2.掌握二重積分的計算方法(直角坐标、極坐标),會計算三重積分(直角坐标、柱面坐标、球面坐标).
3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系.
4.掌握計算兩類曲線積分的方法.
5.掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數全微分的原函數.
6.了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分.
7.了解散度與旋度的概念,并會計算.
8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質量、質心、形心、轉動慣量、引力、功及流量等).
七、無窮級數
考試内容
考試要求
1.理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件.
2.掌握幾何級數與級數的收斂與發散的條件.
3.掌握正項級數收斂性的比較判别法和比值判别法,會用根值判别法.
4.掌握交錯級數的萊布尼茨判别法.
5.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系.
6.了解函數項級數的收斂域及和函數的概念.
7.理解幂級數收斂半徑的概念,并掌握幂級數的收斂半徑、收斂區間及收斂域的求法.
8.了解幂級數在其收斂區間内的基本性質(和函數的連續性、逐項求導和逐項積分),會求一些幂級數在收斂區間内的和函數,并會由此求出某些數項級數的和.
9.了解函數展開為泰勒級數的充分必要條件.
►線性代數
一、行列式
考試内容
行列式的概念和基本性質行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
二、矩陣
考試内容
矩陣的概念矩陣的線性運算矩陣的乘法方陣的幂方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴随矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質.
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的幂與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴随矩陣的概念,會用伴随矩陣求逆矩陣.
4.理解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.
5.了解分塊矩陣及其運算.
三、向量
考試内容
向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相關概念維向量空間的基變換和坐标變換過渡矩陣向量的内積線性無關向量組的正交規範化方法規範正交基正交矩陣及其性質
考試要求
1.理解n維向量、向量的線性組合與線性表示的概念.
2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判别法.
3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.
5.了解n維向量空間、子空間、基底、維數、坐标等概念.
6.了解基變換和坐标變換公式,會求過渡矩陣.
7.了解内積的概念,掌握線性無關向量組正交規範化的施密特(Schmidt)方法.
8.了解規範正交基、正交矩陣的概念以及它們的性質.
四、線性方程組
考試内容
線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解
考試要求
l.會用克拉默法則.
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.
3.理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法.
4.理解非齊次線性方程組解的結構及通解的概念.
5.掌握用初等行變換求解線性方程組的方法.
五、矩陣的特征值和特征向量
考試内容
矩陣的特征值和特征向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣
考試要求
1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量.
2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,掌握将矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特征值和特征向量的性質.
六、二次型
考試内容
二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的标準形和規範形用正交變換和配方法化二次型為标準形二次型及其矩陣的正定性
考試要求
1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的标準形、規範形的概念以及慣性定理.
2.掌握用正交變換化二次型為标準形的方法,會用配方法化二次型為标準形.
3.理解正定二次型、正定矩陣的概念,并掌握其判别法.
►概率論與數理統計
一、随機事件和概率
考試内容
随機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重複試驗
考試要求
1.了解樣本空間(基本事件空間)的概念,理解随機事件的概念,掌握事件的關系及運算.
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式.
3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重複試驗的概念,掌握計算有關事件概率的方法.
四、随機變量的數字特征
考試内容
随機變量的數學期望(均值)、方差、标準差及其性質随機變量函數的數學期望矩、協方差、相關系數及其性質
考試要求
1.理解随機變量數字特征(數學期望、方差、标準差、矩、協方差、相關系數)的概念,會運用數字特征的基本性質,并掌握常用分布的數字特征.
2.會求随機變量函數的數學期望.
五、大數定律和中心極限定理
考試内容
切比雪夫(Chebyshev)不等式切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫不等式.
2.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布随機變量序列的大數定律).
3.了解棣莫弗-拉普拉斯定理(二項分布以正态分布為極限分布)和列維-林德伯格定理(獨立同分布随機變量序列的中心極限定理).
七、參數估計
考試内容
點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選标準區間估計的概念單個正态總體的均值和方差的區間估計兩個正态總體的均值差和方差比的區間估計
考試要求
1.理解參數的點估計、估計量與估計值的概念.
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.
3.了解估計量的無偏性、有效性(最小方差性)和一緻性(相合性)的概念,并會驗證估計量的無偏性.
4、理解區間估計的概念,會求單個正态總體的均值和方差的置信區間,會求兩個正态總體的均值差和方差比的置信區間.
八、假設檢驗
考試内容
顯著性檢驗假設檢驗的兩類錯誤單個及兩個正态總體的均值和方差的假設檢驗
考試要求
1.理解顯著性檢驗的基本思想,掌握假設檢驗的基本步驟,了解假設檢驗可能産生的兩類錯誤.
2.掌握單個及兩個正态總體的均值和方差的假設檢驗.
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!