冀教版六年級數學比例講解?三 正比例 反比例一、正比例的量(正比例關系),我來為大家講解一下關于冀教版六年級數學比例講解?跟着小編一起來看一看吧!
三 正比例 反比例 一、正比例的量(正比例關系) 1.變化的量:生活中存在着大量互相依存的變量,一種量變化,另一種量也随着變化。 2.兩種相關聯的量,一種量變化,另一種量也随着變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。 3.正比例關系兩種相關聯的量的變化規律:一種量擴大(縮小),另一種量也同時擴大(縮小) 二、判斷兩種量是否成正比例 運用正比例的意義判斷兩種量是否成正比例:有些相關聯的量,雖然也是一種量随着另一種量的變化而變化,但它們相對應的數的比值不一定,就不成正比例,如被減數與差;正方形的面積與邊長。總價随着數量的變化而變化,總價和數量的比值(單價)是一定的,我們就說,總價和數量是成正比例的量。 三、正比例圖象 正比例關系的圖象是一條經過原點的射線。 四、反比例的量(反比例關系) 1.反比例的量:兩種相關聯的量,一種量變化,另一種量也随着變化,如果這兩種量中相對應的兩個數的乘積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。 2.反比例關系兩種相關聯的量的變化規律:一種量擴大(縮小),另一種量縮小(擴大) 五、判斷兩種量是否成反比例 判斷兩種量是否成反比例的方法:關鍵是看這兩個相關聯的量中相對應的兩個數的乘積是否一定,如果乘積一定,就成反比例。 例如:長方形的長×寬=長方形的面積(一定),長和寬是成反比例的量;每本的頁數×裝訂的本數=紙的總頁數(一定),每本的頁數和裝訂的本數是成反比例的量。 六、正、反比例的字母表達式 1.用字母x和y表示兩種相關聯的量,用k表示一定的量,那麼成正比例的關系可以寫成:=k(一定)。 2.用字母x和y表示兩種相關聯的量,用k表示一定的量,那麼成反比例的關系可以寫成:x×y=k(一定)。 3.正比例和反比例有什麼相同點和不同點? (1)相同點:正、反比例都是研究兩種相關聯的量之間的關系,即一種量變化,另一種量也随着變化。 (2)不同點:正比例是兩種相關聯的量中相對應的兩個數的比值(商)一定;反比例是兩種相關聯的量中相對應的兩個數的乘積一定。 4.根據關系式,說出哪種量一定,哪兩種量成正比例或反比例。 當a×b=c(a、b、c 為三種量,且均不為0)時,若c一定,a與b成反比例;a一定時,b與c成正比例;b一定時,a與c成正比例。 |
巧記 識别正比例,尋找變量是關鍵,變量要有兩種量,一種量變了,另一種量也随着變,但是無論怎麼變,兩種變量的比值不能變。 易錯點:1.判斷兩種量是否成正比例的關鍵是看兩種量的比值(商)是否一定。 2.注意挖掘兩種變量之間隐含的不變量。如訂閱《中國少年報》的份數和總價成正比例。這裡的單價是不變的。 易錯點:讀正比例關系圖象時,一般先讀橫軸,再讀縱軸。 巧記 識别反比例,尋找變量是關鍵,變量要有兩種量,一種量變了,另一種量也随着變,但是無論怎麼變,兩種變量的乘積不能變。 易錯點:判斷兩種量是否成反比例的關鍵是看兩種量的乘積是否一定。 巧記 正反比例要判斷, 區别不變是關鍵, 乘積不變是反比, 比值不變是正比。 易錯點:根據乘法(或除法)算式中的三個量的關系,判斷其中的兩個量成什麼比例,關鍵是抓住不變的量是另外兩個變量的乘積還是比值。 |
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!