可導函數的導函數不一定連續,可以有震蕩間斷點,例如:把f(t)=sin(1/t)*t^2的可去間斷點t=0補充定義f(0)=0,得到的新函數可導,導函數在t=0處間斷。
在微積分學中,一個實變量函數是可導函數,若其在定義域中每一點導數存在。直觀上說,函數圖像在其定義域每一點處是相對平滑的,不包含任何尖點、斷點。
關于函數的可導導數和連續的關系
1、連續的函數不一定可導。
2、可導的函數是連續的函數。
3、越是高階可導函數曲線越是光滑。
4、存在處處連續但處處不可導的函數。
左導數和右導數存在且“相等”,才是函數在該點可導的充要條件,不是左極限=右極限(左右極限都存在)。連續是函數的取值,可導是函數的變化率,當然可導是更高一個層次。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!