tft每日頭條

 > 知識

 > 多邊形外角和多少度

多邊形外角和多少度

知識 更新时间:2025-02-24 14:24:08

  多邊形的外角和是360度。證明過程如下:設多邊形的邊數為n,則其内角和=(n-2)*180°,因為n邊形有n個頂點,每個頂點的一個外角和相鄰的内角互補,等于180°,所以n邊形的外角和等于n*180°-(n-2)*180°等于360°,即n邊形的外角和等于360度。

  與多邊形的内角相對應的是外角,多邊形的外角就是将其中一條邊延長并與另一條邊相夾的那個角。任意凸多邊形的外角和都為360°。多邊形所有外角的和叫做多邊形的外角和。

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关知識资讯推荐

热门知識资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved