tft每日頭條

 > 科技

 > 岩爆預測的多維雲模型

岩爆預測的多維雲模型

科技 更新时间:2025-01-16 01:57:52

前文回顧

之前介紹過 Slater Koster系數的自動獲取,以及M2X3的QAHE的哈密頓分析,

這一節在之前基礎上,将M2X3這個體系,使用一個通用的TB模型代碼,将其能帶以及量子反常霍爾效應展示出來。

這個相對通用的TB模型,還差一點點東西,後面會把SOC代碼塊加進來。

結構

岩爆預測的多維雲模型(M2X3類型二維材料的量子反常霍爾效應)1

MX結構:M為金屬,X為O族元素或者有機配體

代碼功能

給出晶格,軌道,建能 代碼會自動給出Slater Koster系數,給出哈密頓,給出本征值、能帶,後續會給出貝裡曲率、陳數。

現在這個代碼還沒寫全,還差一個通用的貝裡曲率計算代碼塊,soc矩陣代碼塊以及陳數計算代碼塊。這一節先手動補上,後面有時間會寫成通用的代碼塊。

代碼展示

from numpy import * import numpy.matlib as mtl import matplotlib.pyplot as plt import matplotlib from matplotlib import cm ### lattice and orbit # s py pz px dxy dyz dz2 dxz d(x2-y2) # 0 1 2 3 4 5 6 7 8 lat = [[1,0],[-1/2, sqrt(3)/2]] lat=array(lat) o1 = [2/3,1/3, 5] o2 = [2/3,1/3, 7] o3 = [1/3,2/3, 5] o4 = [1/3,2/3, 7] ## bond energy dd_sigma = 0 dd_pi = 0.4096 dd_delta = 0.0259 num = 4 ##orbit number ## connect vector and direction cosin def vector(o1,o2,x,y): r = (o2[0:2] array([x,y])-o1[0:2]).dot(lat) l = r[0]/sqrt(r[0]**2 r[1]**2) m = r[1]/sqrt(r[0]**2 r[1]**2) return r,l, m ## SK parameters # s py pz px dxy dyz dz2 dxz d(x2-y2) # 0 1 2 3 4 5 6 7 8 def sk(l,m,d1,d2,dd_sigma,dd_pi,dd_delta): sk = zeros((9,9)) sk[4,4] = 3*l**2 *m**2 * dd_sigma (l**2 m**2 - 4 * l**2 * m**2) * dd_pi l**2 * m**2 * dd_delta sk[4,5] = 0 sk[4,6] = -0.5*sqrt(3)*l*m*(l**2 m**2)*dd_sigma 0.5*l*m*dd_delta sk[4,7] = 0 sk[4,8] = 3/2 * l * m *(l**2-m**2) * dd_sigma 2*l*m*(m**2-l**2) * dd_pi 0.5*l*m*(l**2-m**2)*dd_delta sk[5,4] = 0 sk[5,5] = m**2*dd_pi l**2*dd_delta sk[5,6] = 0 sk[5,7] = l*m*dd_pi -l*m*dd_delta sk[5,8] = 0 sk[6,4] = sk[4,6] sk[6,5] = 0 sk[6,6] = 1/4 * (l**2 m**2)**2 * dd_sigma 3/4 * (l**2 m**2)**2 * dd_delta sk[6,7] = 0 sk[6,8] = sqrt(3)/4 * (l**2-m**2) * dd_delta - sqrt(3)/4 * (l**2-m**2) * (l**2 m**2) * dd_sigma sk[7,4] = 0 sk[7,5] = sk[5,7] sk[7,6] = 0 sk[7,7] = l**2 * dd_pi m**2 * dd_delta sk[7,8] = 0 sk[8,4] = sk[4,8] sk[8,5] = 0 sk[8,6] = sk[6,8] sk[8,7] = sk[7,8] sk[8,8] = 3/4 * (l**2-m**2) * dd_sigma (l**2 m**2 - (l**2-m**2)**2) * dd_pi \ 1/4 * (l**2-m**2)**2 * dd_delta return sk[d1,d2] ### give connect vector and hopping from SK results def hop_vec(o1,o2,x,y): r,l,m =vector(o1,o2,x,y) d1,d2 = o1[2],o2[2] t=sk(l,m,d1,d2,dd_sigma,dd_pi,dd_delta) return t,r ## give hopping t and connect vector for the matrix element t131,r131 = hop_vec(o1,o3,0,0) t141,r141 = hop_vec(o1,o4,0,0) t132,r132 = hop_vec(o1,o3,1,0) t142,r142 = hop_vec(o1,o4,1,0) t133,r133 = hop_vec(o1,o3,0,-1) t143,r143 = hop_vec(o1,o4,0,-1) t231,r231 = hop_vec(o2,o3,0,0) t241,r241 = hop_vec(o2,o4,0,0) t232,r232 = hop_vec(o2,o3,1,0) t242,r242 = hop_vec(o2,o4,1,0) t233,r233 = hop_vec(o2,o3,0,-1) t243,r243 = hop_vec(o2,o4,0,-1) ## eigenvalue of Hamiltonian def H(K): H=zeros((num,num),dtype=complex) H[0,2] = t131 * exp(1.j*K.dot(r131)) t132 * exp(1.j*K.dot(r132)) t133 * exp(1.j*K.dot(r133)) H[0,3] = t141 * exp(1.j*K.dot(r141)) t142 * exp(1.j*K.dot(r142)) t143 * exp(1.j*K.dot(r143)) H[1,2] = t231 * exp(1.j*K.dot(r231)) t232 * exp(1.j*K.dot(r232)) t233 * exp(1.j*K.dot(r233)) H[1,3] = t241 * exp(1.j*K.dot(r241)) t242 * exp(1.j*K.dot(r242)) t243 * exp(1.j*K.dot(r243)) H[0,0]= 0 H[1,1]= 0 H[2,2]= 0 H[3,3]= 0 for i in range(num): for j in range(num): if j > i: H[j,i] = conj(H[i,j]) return H def eH(K): return linalg.eigh(H(K))[0] #reciprocal lattice b1=array([1,1/sqrt(3)])*pi*2 b2=array([0,2/sqrt(3)])*pi*2 #高對稱點 G=array([0,0]) M=0.5*b1 K= 1/3 * b1 1/3 * b2 K2= -1/3 * b1 - 1/3 * b2 #K點路徑G-M kgm = linspace(G,M,100,endpoint=False) kmk = linspace(M,K,100,endpoint=False) kkg = linspace(K,G,100) kgk2 = linspace(G,K2,100) ##K點相對距離 def Dist(r1,r2): return linalg.norm(r1-r2) lgm=Dist(G,M) lmk=Dist(M,K) lkg=Dist(K,G) lgk2=Dist(G,K2) lk = linspace(0,1,100) xgm = lgm * lk xmk = lmk * lk xgm[-1] xkg = lkg * lk xmk[-1] xgk2 = lgk2 * lk xkg[-1] kpath = concatenate((xgm,xmk,xkg,xgk2),axis=0) Node = [0,xgm[-1],xmk[-1],xkg[-1],xgk2[-1]] ## 按照高對稱點求本征值 Eig_gm = array(list(map(eH,kgm))) Eig_mk = array(list(map(eH,kmk))) Eig_kg = array(list(map(eH,kkg))) Eig_gk2 = array(list(map(eH,kgk2))) eig_1 = hstack((Eig_gm[:,0],Eig_mk[:,0],Eig_kg[:,0],Eig_gk2[:,0])) eig_2 = hstack((Eig_gm[:,1],Eig_mk[:,1],Eig_kg[:,1],Eig_gk2[:,1])) eig_3 = hstack((Eig_gm[:,2],Eig_mk[:,2],Eig_kg[:,2],Eig_gk2[:,2])) eig_4 = hstack((Eig_gm[:,3],Eig_mk[:,3],Eig_kg[:,3],Eig_gk2[:,3])) ##繪圖 plt.plot(kpath,eig_1) plt.plot(kpath,eig_2) plt.plot(kpath,eig_3) plt.plot(kpath,eig_4) #plt.plot(kpath,eig_5) #plt.plot(kpath,eig_6) plt.xticks(Node,[r'$\Gamma$','M','K',r'$\Gamma$','K\'']) plt.show()

不含SOC結果

四帶模型哈密頓

SOC

加入SOC後, 補充到哈密頓中,求本征值

#Hsoc: lambda = 0.02 lam = 0.02 Hsoc = array([[0,1.j*lam,0,0], [-1.j*lam,0,0,0], [0,0,0,1.j*lam], [0,0,-1.j*lam,0]]) def esocH(K): return linalg.eigh(H(K) Hsoc)[0]

岩爆預測的多維雲模型(M2X3類型二維材料的量子反常霍爾效應)2

含soc的能帶

四帶模型的貝裡曲率

dkp =1e-6 numk=201 def dHx(k): k2 = k - np.array([dkp,0]) return (H(k) - H(k2))/dkp def dHy(k): k2 = k - np.array([0,dkp]) return (H(k) - H(k2))/dkp #按順序匹配對應的本征值和本征矢 def ewH(k): e,w=np.linalg.eigh(H(k) Hsoc) w0 = w[:, np.argsort(np.real(e))[0]] w1 = w[:, np.argsort(np.real(e))[1]] w2 = w[:, np.argsort(np.real(e))[2]] w3 = w[:, np.argsort(np.real(e))[3]] e = np.sort(np.real(e)) return [w0,w1,w2,w3],e #<v|dH/dk|c> v,c 取0對應價帶波函數,1對應導帶波函數 def vcdHx(v,k,c): dhc = np.dot(dHx(k), ewH(k)[0][c]) vdhc = np.dot(ewH(k)[0][v].conj(),dhc) return vdhc def vcdHy(v,k,c): dhc = np.dot(dHy(k), ewH(k)[0][c]) vdhc = np.dot(ewH(k)[0][v].conj(),dhc) return vdhc def Omega(k,v,c): return 1.j * (vcdHx(v,k,c) * vcdHy(c,k,v) - vcdHy(v,k,c) * vcdHx(c,k,v))/((ewH(k)[1][v]-ewH(k)[1][c])**2) xx = np.linspace(-1.6*np.pi,1.6*np.pi,numk) yy = np.linspace(-1.6*np.pi,1.6*np.pi,numk) Z= np.zeros((numk,numk)) X,Y = np.meshgrid(xx,yy) for i in range(numk): for j in range(numk): k = np.array([xx[i],yy[j]]) Z[i][j]=np.real(Omega(k,1,2)) np.real(Omega(k,1,3)) np.real(Omega(k,1,0)) np.real(Omega(k,0,1)) np.real(Omega(k,0,2)) np.real(Omega(k,0,3))

貝裡曲率繪圖

from mpl_toolkits.mplot3d.axes3d import Axes3D fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) #ax.set_xlim3d(0.0, num) #ax.set_ylim3d(0.0, num) #ax.set_zlim3d(-0.90, 0.90) ax.view_init(elev=50,azim=50) plt.show()

岩爆預測的多維雲模型(M2X3類型二維材料的量子反常霍爾效應)3

陳數計算

這裡積分區間如上圖,取了三個FBZ的面積所以最後除以3

dk=3.2*np.pi/(numk-1) C=sum(Z)*dk*dk/2/np.pi/3 print("integral of Berry curvature is %f" %C) print("Chern number is %d" %round(C))

岩爆預測的多維雲模型(M2X3類型二維材料的量子反常霍爾效應)4

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关科技资讯推荐

热门科技资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved