同學,你數學學的怎麼樣?
“老師講的都會了,可是做題就出錯……”
“我家孩子粗心大意,考滿分很難。”
數學不像語文那樣,很多題型隻要答出相近意思即可,它要求計算的準确性,一點都不能錯,一步錯步步錯!
老師發現很多小學生在計算方面很“弱”——找不到技巧。在一些規定要用“簡便方法”計算的題目中,很多同學不會套用“簡便方法”。
所以,老師特意整理了一部分關于運用“簡便方法”計算的資料,希望可以幫助這方面比較欠缺的孩子!
提取公因式
這個方法實際上是運用了乘法分配律,将相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41 8.59)
借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999 999 99 9
=9999 1 999 1 99 1 9 1—4
拆 分 法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法結合律
注意對加法結合律
(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律結這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現:57×101=?
利用基準數在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072 2052 2062 2042 2083
=(2062x5) 10-10-20 21
利用公式法
(1) 加法:
交換律,a b=b a,
結合律,(a b) c=a (b c).
(2) 減法運算性質:
a-(b c)=a-b-c,
a-(b-c)=a-b c,
a-b-c=a-c-b,
(a b)-c=a-c b=b-c a.
(3):乘法(與加法類似):
交換律,a*b=b*a,
結合律,(a*b)*c=a*(b*c),
分配率,(a b)xc=ac bc,
(a-b)*c=ac-bc.
(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a b)÷c=a÷c b÷c,
(a-b)÷c=a÷c-b÷c.
前邊的運算定律、性質公式很多是由于去掉或加上括号而發生變化的。其規律是同級運算中,加号或乘号後面加上或去掉括号,後面數值的運算符号不變。
例題
例1:
283 52 117 148
=(283 117) (52 48)
(運用加法交換律和結合律)。
減号或除号後面加上或去掉括号,後面數值的運算符号要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。)
例3:
195-(95 24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100 42
(同上)
例5:
(0.75 125)*8
=0.75*8 125*8=6 1000
(運用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450 81)÷9
=450÷9 81÷9
=50 9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(運用除法性質)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(運用乘法交換律和結合律)
例12:
(175 45 55 27)-75
=175-75 (45 55) 27
=100 100 27=227.
(運用加法性質和結合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(運用除法性質, 相當加法性質)
裂 項 法
分數裂項是指将分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.
常見的裂項方法是将數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需複雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特征:
(1)分子全部相同,最簡單形式為都是1的,複雜形式可為都是x(x為任意自然數)的,但是隻要将x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,并且滿足相鄰2個分母上的因數“首尾相接”
(3)分母上幾個因數間的差是一個定值。
公式:
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!