直接上幹貨:
※.線性穿插法計算近似值設√200=x,并找與之最近的兩個完全平方數,有:
√196=14,
√200=x,
√225=15,用線性穿插得:
(200-196)/(225-200)=(x-14)/(15-x)
4(15-x)=25(x-14)
29x=410
x=410/29≈14.1379.
∵dy=f'(x)dx,f(x)=√x,
∴dy=dx/(2√x)
對于本題有:
√200-√196=(200-196)/(2√196)
√200=√196 4/(2*14)
√200=14 1/7
≈14.1428.
※.極限法計算近似值原理為當x趨近無窮小時,有(1±x)^a≈1±ax,其中a為不為1的常數。
對于本題:
√200=√(196 4)
√200=√[196(1 4/196)]
=14√(1 4/196)
=14*[1 4/(2*196)]
=14 1/7
≈14.1428.
※.泰勒展開式計算近似值∵f(x)=f(x0)/0! f'(x0)(x-x0)/1! f"(x0)(x-x0)^2/2! O(x^3)
∴f(x)=f(x0) f'(x0)(x-x0) f"(x0)(x-x0)^2/2 O(x^3)
其中O(x^3)表示x的三次無窮小。
對于本題幂函數y=f(x)=√x,有:
f'(x)=(1/2)x^(-1/2),f"(x)=-(1/4)x^(-3/2)。
即:
f(x)≈f(x0) (1/2)x0^(-1/2)(x-x0)-(1/8)x0^(-3/2)*(x-x0)^2。
對于本題,x=200,x0=196,x-x0=4,代入得:
√200
≈√196 (2/1)*196^(-1/2)
-(1/8)*4^2*196^(-3/2)
≈14 (2/1)*14^(-1)-(1/8)*4^2*14^(-3)
≈14 1/7-4^2/(8*14^3)
即:
√200≈14.1421。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!