等價公式:e^x-1-x(x→0)。設有兩個命題p和q,如果由p作為條件能使得結論q成立,則稱p是q的充分條件;若由q能使p成立則稱p是q的必要條件;如果p與q能互推,則稱p是q的充分必要條件,簡稱充要條件,也稱p與q等價。
若關系R在集合A中是自反、對稱和傳遞的,則稱R為A上的等價關系。所謂關系R就是笛卡爾積A×A中的一個子集。
A中的兩個元素x,y有關系R,如果(x,y)∈R。我們常簡記為xRy。
自反:任意x屬于A,則x與自己具有關系R,即xRx;
對稱:任意x,y屬于A,如果x與y具有關系R,即xRy,則y與x也具有關系R,即yRx;
傳遞:任意x,y,z屬于A,如果xRy且yRz,則xRz
x,y具有等價關系R,則稱x,yR等價,有時亦簡稱等價。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!