tft每日頭條

 > 生活

 > 函數與不等式結合求參數

函數與不等式結合求參數

生活 更新时间:2025-01-09 02:05:53

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)1

(許興華數學)

【本講所需要的知識點小結】函數的單調性:

  1. 增函數:如果對于函數f(x)在定義域D内的任意兩點m<n,都有f(m)<f(n),則稱函數在D上是增函數;

  2. 減函數:如果對于函數f(x)在定義域D内的任意兩點m<n,都有f(m)>f(n),則稱函數在D上是減函數。

  3. 函數f(x)在定義域D上是增函數或者減函數的性質,稱為“函數的單調性”。

  4. 導數方法:若可導函數f(x)在定義域D内的導數f’(x)>0,則函數在D上是增函數;若可導函數f(x)在定義域D内的導數f’(x)<0,則函數在D上是減函數。

5.【巧妙構造的思路與方法】對有關數列的不等式問題及涉及以正整數n為變量的數學問題,我們常常可視為函數f(n),然後同f(n)一樣判定其單調性,一般要利用“作差比較法”或者“作商比較法”判定其單調性。

【分析】對于這類問題,我們可以看成自變量是n的函數,而且原不等式等價于

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)2

于是,隻要我們設不等式的左邊為f(n),則可利用函數f(n)的單調性來給出證明。

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)3

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)4

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)5

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)6

函數與不等式結合求參數(利用函數思想解與不等式有關的簡單問題)7

(許興華數學)

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved