tft每日頭條

 > 生活

 > 一篇文章徹底學會遞歸思路解題

一篇文章徹底學會遞歸思路解題

生活 更新时间:2025-01-16 08:11:52

前 言

遞歸是算法中一種非常重要的思想,應用也很廣,小到階乘,再在工作中用到的比如統計文件夾大小,大到 Google 的 PageRank 算法都能看到,也是面試官很喜歡的考點

最近看了不少遞歸的文章,收獲不小,不過我發現大部分網上的講遞歸的文章都不太全面,主要的問題在于解題後大部分都沒有給出相應的時間/空間複雜度,而時間/空間複雜度是算法的重要考量!遞歸算法的時間複雜度普遍比較難(需要用到歸納法等),換句話說,如果能解決遞歸的算法複雜度,其他算法題題的時間複雜度也基本不在話下。另外,遞歸算法的時間複雜度不少是不能接受的,如果發現算出的時間複雜度過大,則需要轉換思路,看下是否有更好的解法 ,這才是根本目的,不要為了遞歸而遞歸!

本文試圖從以下幾個方面來講解遞歸

  1. 什麼是遞歸?
  2. 遞歸算法通用解決思路
  3. 實戰演練(從初級到高階)

力争讓大家對遞歸的認知能上一個新台階,特别會對遞歸的精華:時間複雜度作詳細剖析,會給大家總結一套很通用的求解遞歸時間複雜度的套路,相信你看完肯定會有收獲

什麼是遞歸

簡單地說,就是如果在函數中存在着調用函數本身的情況,這種現象就叫遞歸。

以階乘函數為例,如下, 在 factorial 函數中存在着 factorial(n - 1) 的調用,所以此函數是遞歸函數

public int factorial(int n) { if (n < =1) { return 1; } return n * factorial(n - 1) }

進一步剖析「遞歸」,先有「遞」再有「歸」,「遞」的意思是将問題拆解成子問題來解決, 子問題再拆解成子子問題,...,直到被拆解的子問題無需再拆分成更細的子問題(即可以求解),「歸」是說最小的子問題解決了,那麼它的上一層子問題也就解決了,上一層的子問題解決了,上上層子問題自然也就解決了,....,直到最開始的問題解決,文字說可能有點抽象,那我們就以階層 f(6) 為例來看下它的「遞」和「歸」。

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)1

求解問題 f(6), 由于 f(6) = n * f(5), 所以 f(6) 需要拆解成 f(5) 子問題進行求解,同理 f(5) = n * f(4) ,也需要進一步拆分,... ,直到 f(1), 這是「遞」,f(1) 解決了,由于 f(2) = 2 f(1) = 2 也解決了,.... f(n)到最後也解決了,這是「歸」,所以遞歸的本質是能把問題拆分成具有相同解決思路的子問題,。。。直到最後被拆解的子問題再也不能拆分,解決了最小粒度可求解的子問題後,在「歸」的過程中自然順其自然地解決了最開始的問題。

遞歸算法通用解決思路

我們在上一節仔細剖析了什麼是遞歸,可以發現遞歸有以下兩個特點

  1. 一個問題可以分解成具有相同解決思路的子問題,子子問題,換句話說這些問題都能調用同一個函數
  2. 經過層層分解的子問題最後一定是有一個不能再分解的固定值的(即終止條件),如果沒有的話,就無窮無盡地分解子問題了,問題顯然是無解的。

所以解遞歸題的關鍵在于我們首先需要根據以上遞歸的兩個特點判斷題目是否可以用遞歸來解。

經過判斷可以用遞歸後,接下來我們就來看看用遞歸解題的基本套路(四步曲):

  1. 先定義一個函數,明确這個函數的功能,由于遞歸的特點是問題和子問題都會調用函數自身,所以這個函數的功能一旦确定了, 之後隻要找尋問題與子問題的遞歸關系即可
  2. 接下來尋找問題與子問題間的關系(即遞推公式),這樣由于問題與子問題具有相同解決思路,隻要子問題調用步驟 1 定義好的函數,問題即可解決。所謂的關系最好能用一個公式表示出來,比如 f(n) = n * f(n-1) 這樣,如果暫時無法得出明确的公式,用僞代碼表示也是可以的, 發現遞推關系後,要尋找最終不可再分解的子問題的解,即(臨界條件),确保子問題不會無限分解下去。由于第一步我們已經定義了這個函數的功能,所以當問題拆分成子問題時,子問題可以調用步驟 1 定義的函數,符合遞歸的條件(函數裡調用自身)
  3. 将第二步的遞推公式用代碼表示出來補充到步驟 1 定義的函數中
  4. 最後也是很關鍵的一步,根據問題與子問題的關系,推導出時間複雜度,如果發現遞歸時間複雜度不可接受,則需轉換思路對其進行改造,看下是否有更靠譜的解法

聽起來是不是很簡單,接下來我們就由淺入深地來看幾道遞歸題,看下怎麼用上面的幾個步驟來套

實戰演練(從初級到高階)

熱身賽

輸入一個正整數n,輸出n!的值。其中n!=123*…*n, 即求階乘

套用上一節我們說的遞歸四步解題套路來看看怎麼解

  1. 定義這個函數,明确這個函數的功能,我們知道這個函數的功能是求 n 的階乘, 之後求 n-1, n-2 的階乘就可以調用此函數了

/** * 求 n 的階乘 */ public int factorial(int n) { }

2. 尋找問題與子問題的關系 階乘的關系比較簡單, 我們以 f(n) 來表示 n 的階乘, 顯然 f(n) = n * f(n - 1), 同時臨界條件是 f(1) = 1,即

3. 将第二步的遞推公式用代碼表示出來補充到步驟 1 定義的函數中

/** * 求 n 的階乘 */ public int factorial(int n) { // 第二步的臨界條件 if (n < =1) { return 1; } // 第二步的遞推公式 return n * factorial(n-1) }

4. 求時間複雜度 由于 f(n) = n * f(n-1) = n * (n-1) * .... * f(1),總共作了 n 次乘法,所以時間複雜度為 n。

看起來是不是有這麼點眉目, 當然這道題确實太過簡單,很容易套路,那我們再來看進階一點的題

入門題

一隻青蛙可以一次跳 1 級台階或一次跳 2 級台階,例如:

跳上第 1 級台階隻有一種跳法:直接跳 1 級即可。跳上第 2 級台階

有兩種跳法:每次跳 1 級,跳兩次;或者一次跳 2 級。

問要跳上第 n 級台階有多少種跳法?

我們繼續來按四步曲來看怎麼套路

1. 定義一個函數,這個函數代表了跳上 n 級台階的跳法

/** * 跳 n 極台階的跳法 */ public int f(int n) { }

2. 尋找問題與子問題之前的關系 這兩者之前的關系初看确實看不出什麼頭緒,但仔細看題目,一隻青蛙隻能跳一步或兩步台階,自上而下地思考,也就是說如果要跳到 n 級台階隻能從 從 n-1 或 n-2 級跳, 所以問題就轉化為跳上 n-1 和 n-2 級台階的跳法了,如果 f(n) 代表跳到 n 級台階的跳法,那麼從以上分析可得 f(n) = f(n-1) f(n-2),顯然這就是我們要找的問題與子問題的關系,而顯然當 n = 1, n = 2, 即跳一二級台階是問題的最終解,于是遞推公式系為

3. 将第二步的遞推公式用代碼表示出來補充到步驟 1 定義的函數中 補充後的函數如下

/** * 跳 n 極台階的跳法 */ public int f(int n) { if (n == 1) return 1; if (n == 2) return 2; return f(n-1) f(n-2) }

4. 計算時間複雜度 由以上的分析可知 f(n) 滿足以下公式

斐波那契的時間複雜度計算涉及到高等代數的知識, 這裡不做詳細推導,有興趣的同學可以點擊這裡查看,我們直接結出結論

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)2

由些可知時間複雜度是指數級别,顯然不可接受,那回過頭來看為啥時間複雜度這麼高呢,假設我們要計算 f(6),根據以上推導的遞歸公式,展示如下

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)3

可以看到有大量的重複計算, f(3) 計算了 3 次, 随着 n 的增大,f(n) 的時間複雜度自然呈指數上升了

5. 優化

既然有這麼多的重複計算,我們可以想到把這些中間計算過的結果保存起來,如果之後的計算中碰到同樣需要計算的中間态,直接在這個保存的結果裡查詢即可,這就是典型的 以空間換時間,改造後的代碼如下

public int f(int n) { if (n == 1) return 1; if (n == 2) return 2; // map 即保存中間态的鍵值對, key 為 n,value 即 f(n) if (map.get(n)) { return map.get(n) } return f(n-1) f(n-2) }

那麼改造後的時間複雜度是多少呢,由于對每一個計算過的 f(n) 我們都保存了中間态 ,不存在重複計算的問題,所以時間複雜度是 O(n), 但由于我們用了一個鍵值對來保存中間的計算結果,所以空間複雜度是 O(n)。問題到這裡其實已經算解決了,但身為有追求的程序員,我們還是要問一句,空間複雜度能否繼續優化?

6. 使用循環叠代來改造算法 我們在分析問題與子問題關系(f(n) = f(n-1) f(n-2))的時候用的是自頂向下的分析方式,但其實我們在解 f(n) 的時候可以用自下而上的方式來解決,通過觀察我們可以發現以下規律

f(1) = 1 f(2) = 2 f(3) = f(1) f(2) = 3 f(4) = f(3) f(2) = 5 .... f(n) = f(n-1) f(n-2)

最底層 f(1), f(2) 的值是确定的,之後的 f(3), f(4) ,...等問題都可以根據前兩項求解出來,一直到 f(n)。所以我們的代碼可以改造成以下方式

public int f(int n) { if (n == 1) return 1; if (n == 2) return 2; int result = 0; int pre = 1; int next = 2; for (int i = 3; i < n 1; i ) { result = pre next; pre = next; next = result; } return result; }

改造後的時間複雜度是 O(n), 而由于我們在計算過程中隻定義了兩個變量(pre,next),所以空間複雜度是O(1)

簡單總結一下:分析問題我們需要采用自上而下的思維,而解決問題有時候采用自下而上的方式能讓算法性能得到極大提升,思路比結論重要

初級題

接下來我們來看下一道經典的題目: 反轉二叉樹 将左邊的二叉樹反轉成右邊的二叉樹

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)4

接下來讓我們看看用我們之前總結的遞歸解法四步曲如何解題

1. 定義一個函數,這個函數代表了翻轉以 root 為根節點的二叉樹

public static class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public TreeNode invertTree(TreeNode root) { }

2. 查找問題與子問題的關系,得出遞推公式 我們之前說了,解題要采用自上而下的思考方式,那我們取前面的1, 2,3 結點來看,對于根節點 1 來說,假設 2, 3 結點下的節點都已經翻轉,那麼隻要翻轉 2, 3 節點即滿足需求

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)5

對于2, 3 結點來說,也是翻轉其左右節點即可,依此類推,對每一個根節點,依次翻轉其左右節點,所以我們可知問題與子問題的關系是 翻轉(根節點) = 翻轉(根節點的左節點) 翻轉(根節點的右節點) 即

invert(root) = invert(root->left) invert(root->right)

而顯然遞歸的終止條件是當結點為葉子結點時終止(因為葉子節點沒有左右結點)

3. 将第二步的遞推公式用代碼表示出來補充到步驟 1 定義的函數中

public TreeNode invertTree(TreeNode root) { // 葉子結果不能翻轉 if (root == null) { return null; } // 翻轉左節點下的左右節點 TreeNode left = invertTree(root.left); // 翻轉右節點下的左右節點 TreeNode right = invertTree(root.right); // 左右節點下的二叉樹翻轉好後,翻轉根節點的左右節點 root.right = left; root.left = right; return root; }

4. 時間複雜度分析 由于我們會對每一個節點都去做翻轉,所以時間複雜度是 O(n),那麼空間複雜度呢,這道題的空間複雜度非常有意思,我們一起來看下,由于每次調用 invertTree 函數都相當于一次壓棧操作, 那最多壓了幾次棧呢, 仔細看上面函數的下一段代碼

TreeNode left = invertTree(root.left);

從根節點出發不斷對左結果調用翻轉函數, 直到葉子節點,每調用一次都會壓棧,左節點調用完後,出棧,再對右節點壓棧....,下圖可知棧的大小為3, 即樹的高度,如果是完全二叉樹 ,則樹的高度為logn, 即空間複雜度為O(logn)

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)6

最壞情況,如果此二叉樹是如圖所示(隻有左節點,沒有右節點),則樹的高度即結點的個數 n,此時空間複雜度為 O(n),總的來看,空間複雜度為O(n)

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)7

說句題外話,這道題當初曾引起轟動,因為 Mac 下著名包管理工具 homebrew 的作者 Max Howell 當初解不開這道題,結果被 Google 拒了,也就是說如果你解出了這道題,就超越了這位世界大神,想想是不是很激動

中級題

接下來我們看一下大學時學過的漢諾塔問題:如下圖所示,從左到右有A、B、C三根柱子,其中A柱子上面有從小疊到大的n個圓盤,現要求将A柱子上的圓盤移到C柱子上去,期間隻有一個原則:一次隻能移到一個盤子且大盤子不能在小盤子上面,求移動的步驟和移動的次數

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)8

接下來套用我們的遞歸四步法看下這題怎麼解

1. 定義問題的遞歸函數,明确函數的功能,我們定義這個函數的功能為:把 A 上面的 n 個圓盤經由 B 移到 C

// 将 n 個圓盤從 a 經由 b 移動到 c 上 public void hanoid(int n, char a, char b, char c) { }

2. 查找問題與子問題的關系 首先我們看如果 A 柱子上隻有兩塊圓盤該怎麼移

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)9

前面我們多次提到,分析問題與子問題的關系要采用自上而下的分析方式,要将 n 個圓盤經由 B 移到 C 柱上去,可以按以下三步來分析 * 将 上面的 n-1 個圓盤看成是一個圓盤,這樣分析思路就與上面提到的隻有兩塊圓盤的思路一緻了 * 将上面的 n-1 個圓盤經由 C 移到 B * 此時将 A 底下的那塊最大的圓盤移到 C * 再将 B 上的 n-1 個圓盤經由A移到 C上

有人問第一步的 n - 1 怎麼從 C 移到 B,重複上面的過程,隻要把 上面的 n-2個盤子經由 A 移到 B, 再把A最下面的盤子移到 C,最後再把上面的 n - 2 的盤子經由A 移到 B 下..., 怎麼樣,是不是找到規律了,不過在找問題的過程中 切忌把子問題層層展開,到漢諾塔這個問題上切忌再分析 n-3,n-4 怎麼移,這樣會把你繞暈,隻要找到一層問題與子問題的關系得出可以用遞歸表示即可。

由以上分析可得

move(n from A to C) = move(n-1 from A to B) move(A to C) move(n-1 from B to C`)

一定要先得出遞歸公式,哪怕是僞代碼也好!這樣第三步推導函數編寫就容易很多,終止條件我們很容易看出,當 A 上面的圓盤沒有了就不移了

3. 根據以上的遞歸僞代碼補充函數的功能

// 将 n 個圓盤從 a 經由 b 移動到 c 上 public void hanoid(int n, char a, char b, char c) { if (n <= 0) { return; } // 将上面的 n-1 個圓盤經由 C 移到 B hanoid(n-1, a, c, b); // 此時将 A 底下的那塊最大的圓盤移到 C move(a, c); // 再将 B 上的 n-1 個圓盤經由A移到 C上 hanoid(n-1, b, a, c); } public void move(char a, char b) { printf("%c->%c\n", a, b); }

從函數的功能上看其實比較容易理解,整個函數定義的功能就是把 A 上的 n 個圓盤 經由 B 移到 C,由于定義好了這個函數的功能,那麼接下來的把 n-1 個圓盤 經由 C 移到 B 就可以很自然的調用這個函數,所以明确函數的功能非常重要,按着函數的功能來解釋,遞歸問題其實很好解析,切忌在每一個子問題上層層展開死摳,這樣這就陷入了遞歸的陷阱,計算機都會棧溢出,何況人腦

4. 時間複雜度分析 從第三步補充好的函數中我們可以推斷出

f(n) = f(n-1) 1 f(n-1) = 2f(n-1) 1 = 2(2f(n-2) 1) 1 = 2 * 2 * f(n-2) 2 1 = 22 * f(n-3) 2 1 = 22 * f(n-3) 2 1 = 22 * (2f(n-4) 1) = 23 * f(n-4) 22 1 = .... // 不斷地展開 = 2n-1 2n-2 .... 1

顯然時間複雜度為 O(2n),很明顯指數級别的時間複雜度是不能接受的,漢諾塔非遞歸的解法比較複雜,大家可以去網上搜一下

進階題

現實中大廠中的很多遞歸題都不會用上面這些相對比較容易理解的題,更加地是對遞歸問題進行相應地變形, 來看下面這道題

細胞分裂 有一個細胞 每一個小時分裂一次,一次分裂一個子細胞,第三個小時後會死亡。那麼n個小時候有多少細胞?

照樣我們用前面的遞歸四步曲來解

1. 定義問題的遞歸函數,明确函數的功能 我們定義以下函數為 n 個小時後的細胞數

public int allCells(int n) { }

2. 接下來尋找問題與子問題間的關系(即遞推公式) 首先我們看一下一個細胞出生到死亡後經曆的所有細胞分裂過程

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)10

圖中的 A 代表細胞的初始态, B代表幼年态(細胞分裂一次), C 代表成熟态(細胞分裂兩次),C 再經曆一小時後細胞死亡 以 f(n) 代表第 n 小時的細胞分解數 fa(n) 代表第 n 小時處于初始态的細胞數, fb(n) 代表第 n 小時處于幼年态的細胞數 fc(n) 代表第 n 小時處于成熟态的細胞數 則顯然 f(n) = fa(n) fb(n) fc(n) 那麼 fa(n) 等于多少呢,以n = 4 (即一個細胞經曆完整的生命周期)為例

仔細看上面的圖

可以看出 fa(n) = fa(n-1) fb(n-1) fc(n-1), 當 n = 1 時,顯然 fa(1) = 1

fb(n) 呢,看下圖可知 fb(n) = fa(n-1)。當 n = 1 時 fb(n) = 0

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)11

fc(n) 呢,看下圖可知 fc(n) = fb(n-1)。當 n = 1,2 時 fc(n) = 0

一篇文章徹底學會遞歸思路解題(一篇文章徹底學會遞歸思路解題)12

綜上, 我們得出的遞歸公式如下

f(n) = fa(n) fb(n) fc(n)

3. 根據以上遞歸公式我們補充一下函數的功能

public int allCells(int n) { return aCell(n) bCell(n) cCell(n); } /** * 第 n 小時 a 狀态的細胞數 */ public int aCell(int n) { if(n==1){ return 1; }else{ return aCell(n-1) bCell(n-1) cCell(n-1); } } /** * 第 n 小時 b 狀态的細胞數 */ public int bCell(int n) { if(n==1){ return 0; }else{ return aCell(n-1); } } /** * 第 n 小時 c 狀态的細胞數 */ public int cCell(int n) { if(n==1 || n==2){ return 0; }else{ return bCell(n-1); } }

隻要思路對了,将遞推公式轉成代碼就簡單多了,另一方面也告訴我們,可能一時的遞歸關系我們看不出來,此時可以借助于畫圖來觀察規律

4. 求時間複雜度 由第二步的遞推公式我們知道 f(n) = 2aCell(n-1) 2aCell(n-2) aCell(n-3)

之前青蛙跳台階時間複雜度是指數級别的,而這個方程式顯然比之前的遞推公式(f(n) = f(n-1) f(n-2)) 更複雜的,所以顯然也是指數級别的

總 結

大部分遞歸題其實還是有迹可尋的, 按照之前總結的解遞歸的四個步驟可以比較順利的解開遞歸題,一些比較複雜的遞歸題我們需要勤動手,畫畫圖,觀察規律,這樣能幫助我們快速發現規律,得出遞歸公式,一旦知道了遞歸公式,将其轉成遞歸代碼就容易多了,很多大廠的遞歸考題并不能簡單地看出遞歸規律,往往會在遞歸的基礎上多加一些變形,不過萬遍不離其宗,我們多采用自頂向下的分析思維,多練習,相信遞歸不是什麼難事

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2025 - www.tftnews.com All Rights Reserved