tft每日頭條

 > 時尚

 > 17個立體幾何證明

17個立體幾何證明

時尚 更新时间:2024-11-19 17:42:01

17個立體幾何證明?我寫過很多關于歐拉恒等式的文章,可以說它是世界上最美的等式本文是關于多面體歐拉定理的每當我開始寫一篇關于數學的文章時,我的大腦告訴我這篇文章是由萊昂哈德·歐拉“贊助”的歐拉幾乎在數學的任何一個領域都有所貢獻,我來為大家科普一下關于17個立體幾何證明?下面希望有你要的答案,我們一起來看看吧!

17個立體幾何證明(世界上第二美麗的等式)1

17個立體幾何證明

我寫過很多關于歐拉恒等式的文章,可以說它是世界上最美的等式。本文是關于多面體歐拉定理的。每當我開始寫一篇關于數學的文章時,我的大腦告訴我這篇文章是由萊昂哈德·歐拉“贊助”的。歐拉幾乎在數學的任何一個領域都有所貢獻。

歐拉示性數(The Euler characteristic),一個拓撲不變量,可能是數學領域中第二美麗的方程。我這麼說不是因為我個人喜歡這個方程。事實上,許多科學家更傾向于将其視為一個整體。甚至《LiveScience》雜志的一篇文章在《最美的11個數學方程》中也提到了它。

頂點-邊 面= 2,這就是我們所知道的多面體歐拉定理。讓我們來分析一下。

對于任何凸多面體,頂點數減去邊數加上面數總是等于2。在進一步分析之前,讓我們看看五個柏拉圖多面體。

柏拉圖多面體

在三維空間中,柏拉圖多面體是正的凸多面體。它是由相等的、規則的、多邊形的面構成的,在每個頂點上有相同數量的面。

一個四面體有四個面和四個角,由六條邊連接。對于一個四面體,V = 4,E = 6,F = 4。

V - E F = 4 - 6 4 = 2,因此,它滿足多面體歐拉定理。

我在下面列出了所有的柏拉圖多面體。

  • 四面體:V = 4;E = 6;F = 4。

  • 立方體:V = 8;E = 12;F = 6。

  • 八面體V = 6;E = 12;F = 8。

  • 十二面體:V = 20;E = 30;F = 12。

  • 二十面體:V = 12;E = 30;F = 20。

  • 五個正多面體。

    那是公元前360年一個溫暖的夏夜,柏拉圖正坐在沙發上,想着将四種經典元素(土、氣、水、火)中的每一種都與柏拉圖多面體聯系起來。土和立方體聯系在一起;氣具有八面體,因為它的微小成分是如此光滑,以至于人們幾乎感覺不到;水與二十面體聯系在一起,因為它從一個人的手上流淌過;火與四面體聯系在一起,因為火的溫度讓人感覺尖銳刺痛。當然,我并不能理解他的這些解釋。

  • 開普勒的宇宙奧秘中元素的任務。

    快進到16世紀,德國天文學家約翰尼斯•開普勒(Johannes Kepler)将太陽系的六顆行星(當時除了地球以外,隻有五顆行星被發現)與這五個柏拉圖多面體相聯系(至少是試圖建立聯系)。

    1596年,開普勒提出了一個太陽系的模型,在這個模型中,五個固體是相互嵌在一起的,由一系列内切和外切的球體隔開。

    開普勒認為行星間距離的關系可以用代表土星軌道的球體内的五個柏拉圖多面體來理解,這是一個很酷的想法。

  • 開普勒的柏拉圖多面體太陽系模型。

    這六個球體分别對應着水星、金星、地球、火星、木星和土星。最裡面是一個八面體,接着是一個二十面體,十二面體,四面體,最後是立方體。

    當然,開普勒離現實很遠,但我們不要忘記這五個柏拉圖多面體是多麼重要。回到數學,回到歐拉。

    多面體歐拉定理甚至适用于一個球體。如果你考慮所有的經緯線,計算整個地球的頂點、面和邊并使用多面體歐拉定理公式,你會得到2!

    現在,看看這個四面體如何産生球體的細分,其中四面體的頂點、邊和面對應于細分的頂點、邊和面,細分有4個頂點、6條邊和4個面。多面體歐拉定理适用于四面體。

    同樣,立方體産生了球體的8個頂點、12條邊和6個面的細分。同樣的事情也發生在其他的柏拉圖多面體上。

    基本上,曲面S到曲面S '上的任意同胚将S的一個細分映射到S '的一個細分上,将S的頂點映射到S '的頂點,S的邊映射到S '的邊,S的面映射到S '的面,以一對一的方式。

    在拓撲學中,同胚是兩個拓撲空間之間的雙連續函數。同胚是拓撲空間範疇中的同構。

    我們可以得出結論,細分的歐拉示性數在同态下是保持不變的,因為它遵循V−E F的值保持不變。因此,我們也可以說曲面的歐拉示性數是拓撲不變的。

    對于二維

    歐拉示性數也适用于二維幾何。

    畫一條線。它有2個頂點,1條邊和0個面。所以V - E F = 1。

    假設這兩個頂點是A和B,在平面上的任何地方放一個頂點C(不是在邊AB上)。畫邊BC。現在,我們有3個頂點,2條邊,0個面。同樣,V - E F = 1。現在,用一條邊連接C和A。現在我們有3個頂點,3條邊和1個面,V -E F = 1。

    歐拉示性數在所有這些情況下都存在。現在,如果我們假設整張紙是一個面,除了剛才得到的三角形,我們得到V - E F = 2。

    更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

    查看全部
  • 相关時尚资讯推荐

    热门時尚资讯推荐

    网友关注

    Copyright 2023-2024 - www.tftnews.com All Rights Reserved