前言:通信光纖根據其應用波長下傳輸模式數量的不同,分為單模光纖和多模光纖。由于多模光纖芯徑較大,可以配合低成本光源使用,因此在短距離傳輸場景下有着極為廣泛的應用,如數據中心、局域網等。随着近年來數據中心建設的高速發展,作為數據中心和局域網應用主流的多模光纖也迎來了春天,引起了人們的廣泛關注。今天,我們就來聊一聊,多模光纖的發展曆程。
按照标準ISO/IEC 11801規範,多模光纖分為OM1、OM2、OM3、OM4、OM5五個大類,其與IEC 60792-2-10的對應關系,如表1所示。其中OM1, OM2是指傳統的62.5/125mm和50/125mm多模光纖; OM3、OM4和OM5是指新型的50/125mm萬兆位多模光纖。
表1 标準對應關系
一、傳統多模光纖
多模光纖的研發始于上個世紀七八十年代,早期的多模光纖包括很多尺寸種類,列入國際電工委(IEC)标準中的尺寸類型包括四種,芯包層直徑分為50/125μm、62.5/125μm、85/125μm和100/140μm。由于芯包層尺寸大則制作成本高、抗彎性能差,而且傳輸模數量增多,帶寬降低,因而較大芯包層尺寸的類型逐漸被淘汰,逐漸形成了兩種主要的芯包層尺寸,分别是50/125μm和62.5/125μm。
在早期的局域網中,為了盡可能地降低局域網的系統成本,普遍采用價格低廉的LED作光源。由于LED輸出功率低,發散角比較大,而50/125mm多模光纖的芯徑和數值孔徑都比較小,不利于與LED的高效耦合,不如芯徑和數值孔徑大的62.5/125mm多模光纖能使較多的光功率耦合到光纖鍊路中去,因此,50/125mm多模光纖在20世紀90年代中期以前不如62.5/125mm多模光纖那樣得到廣泛的應用
随着局域網傳輸速率不斷升級,自20世紀末以來,局域網向lGb/s速率以上發展,以LED作光源的62.5/125μm多模光纖僅僅幾百兆的帶寬逐漸不能滿足要求。相比之下,50/125mm多模光纖數值孔徑和芯徑較小,傳導模式也較少,因而有效地降低了多模光纖的模式色散,使得帶寬得到了顯著的增加,由于芯徑較小,50/125mm多模光纖的制作成本也更低,因此重新得到了廣泛的應用。
IEEE802.3z千兆位以太網标準中規定50/125mm多模和62.5/125mm多模光纖都可以作為千兆位以太網的傳輸介質使用。但對新建網絡,一般首選50/125mm多模光纖。
二、激光優化的多模光纖
随着技術的發展,850nm VCSEL(垂直腔體表面發射激光器)出現。VCSEL激光器比長波長激光器價格更低,同時能夠提高網絡速率,因此獲得了廣泛應用。由于兩種發光器件的不同,必須對光纖本身進行改造,以适應光源的變化。
為了VCSEL激光器需要,國際标準化組織/國際電工委員會(ISO/IEC)和美國電信工業聯盟(TIA)聯合起草了新一代纖芯為50mm的多模光纖的标準。ISO/IEC在其所制定的新的多模光纖等級中将新一代多模光纖劃為OM3類别(IEC标準為A1a.2),即為激光優化的多模光纖。
後續出現的OM4光纖,實際是OM3多模光纖的升級版。OM4标準與OM3光纖相比,隻是在光纖帶寬指标做了提升。即OM4光纖标準在850nm波長的有效模式帶寬(EMB)和滿注入帶寬(OFL)相比OM3 光纖都做了提高。如下表2所示。
多模光纖内傳輸模式衆多,随之還帶來光纖抗彎曲性能的問題,當光纖彎曲時,高階的模式極易洩露出去,造成信号的損失,即光纖的彎曲損耗。随着室内應用場景不斷增多,多模光纖在狹窄環境下的布線,對其抗彎曲性能也提出了更高要求。
不同于單模光纖簡單的折射率剖面結構,多模光纖的折射率剖面十分複雜,需要極為精細的折射率剖面設計與制作工藝。在目前國際主流的四大預制棒制備工藝中,制備多模光纖最為精密的是等離子體化學氣象沉積(PCVD)工藝,以長飛公司為代表。該工藝不同于其他工藝,其沉積層數多達幾千層,且沉積時每層僅約1微米的厚度,能夠實現超精細的折射率曲線控制,從而實現高帶寬。
通過對多模光纖折射率剖面的優化,現在的彎曲不敏感多模光纖,其抗彎性能有了顯著提升,如下圖1所示。
圖1抗彎多模光纖與常規多模光纖宏彎性能比較
三、新型多模光纖(OM5)
OM3光纖和OM4光纖,都是主要應用于850nm波段的多模光纖。随着傳輸速率的不斷提升,僅僅單通道的波段設計,會帶來越來越密集的布線成本,随之的管理維護成本也相應升高。因此,技術人員嘗試将波分複用概念引入多模傳輸系統中,如果能夠在一根光纖上傳輸多個波長,則相應的并行光纖根數和鋪設、維護成本都能大幅下降。在此背景下,OM5光纖應運而生。
OM5多模光纖,是在OM4光纖基礎上,擴寬了高帶寬通道,其能夠支持850nm~950nm波段的傳輸應用。目前主流的應用,是SWDM4和SR4.2設計。SWDM4是4個短波的波分複用,分别是850nm、880nm、910nm和940nm。這樣在一根光纖可以支撐此前4根并行光纖的業務。SR4.2是兩波分複用,主要用于單纖雙向技術。OM5能夠與性能好成本低的VCSEL激光器配合,以更好地滿足數據中心等短距離通信。下表3是OM4和OM5光纖的主要帶寬指标對比。
目前,OM5光纖作為一種最新型的高端多模光纖,已有了許多應用案例。其中最大的一個商業案例,是長飛公司和中國鐵路總公司主數據中心的OM5商用案例。該數據中心瞄準了OM5光纖在SR4.2上的波分系統應用優勢,使用最低的成本,實現了最大容量的通信,也為未來進一步升級速率做了準備,未來提升速率至100Gb/s乃至400Gb/s,或者擴寬波段應用時,可以不再更換光纖,能夠顯著降低未來升級成本。
總結:随着應用的需求不斷提高,多模光纖在朝着低彎曲損耗,高帶寬,多波長複用的方向發展,其中,最具有應用潛力的,當屬OM5光纖,其具有目前多模光纖最優的性能,為未來100Gb/s和400Gb/s的多波長系統提供了有力的光纖解決方案。此外,為适應高速率,高帶寬,低成本的數據中心通信的要求,新型的多模光纖,如單多模通用光纖,也正在研發中。未來,長飛公司将和業内同行一道推出更多的新型多模光纖解決方案,給數據中心和光纖互聯帶來新的突破和更低的成本。
,
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!