本文通過全微分、鍊式求導法等方法,介紹計算抽象函數z= f(3xy,x^2 y^2,x^3)的所有二階偏導數的具體步驟。
一階偏導數計算:
z=f(3xy,x^2 y^2,x^3),用全微分求導法,則有:
dz=3f1'(ydx xdy) f2'(2xdx 2ydy) 3x^2f3'dx,即:
dz=3yf1'dx 3xf1'dy 2xf2'dx 2yf2'dy 3x^2f3'dx,
dz=(3yf1' 2xf2' 3x^2f3')dx (3xf1' 2yf2')dy。
則z對x的一階偏導數為:
∂z/∂x=3yf1' 2xf2' 3x^2f3';
同理,z對y的一階偏導數為:
∂z/∂y=3xf1' 2yf2'。
因為∂z/∂x=3yf1' 2xf2' 3x^2f3',再次對x求導,
所以∂^2z/∂x^2
=3y(f11''*3y f12''*2x 3x^2f13'') 2f2' 2x(f21''3y f22''*2x 3x^2f23'') 6xf3' 3x^2(f31''3y f32''*2x 3x^2f33''),
=9y^2f11'' 12xyf12'' 9yx^2f13'' 2f2' 4x^2f22'' 6x^3f23'' 6xf3' 9yx^2f31'' 6x^3f32'' 9x^4f33'',
=9y^2f11'' 12xyf12'' 6yx^2f13'' 2f2' 4x^2f22'' 12x^3f23'' 6xf3' 9x^4f33''
因為∂z/∂y=3xf1' 2yf2',再次對y求導,
所以∂^2z/∂y^2
=3x(f11''*3x f12''*2y) 2f2' 2y(f21''*3x f22''*2y)
=9x^2f11'' 6xyf12'' 2f2' 6xyf12'' 4y^2f22'',
=9x^2f11'' 12xyf12'' 2f2' 4y^2f22''.
因為∂z/∂y=3xf1' 2yf2',再次對x求導,
所以∂^2z/∂y∂x
=3f1' 3x(f11''*3y f12''*2x 3x^2f13'') 2y(f21''*3y f22''*2x 3x^2f23'')
=3f1' 9xyf11'' 6x^2f12'' 9x^3f13'' 6y^2f12'' 4xyf22'' 6yx^2f23'',
=3f1' 9xyf11'' 6(x^2 y^2)f12'' 9x^3f13'' 4xyf22'' 6yx^2f23''。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!