tft每日頭條

 > 生活

 > 九年級數學一二三單元知識點整理

九年級數學一二三單元知識點整理

生活 更新时间:2024-12-27 09:47:26

九年級數學一二三單元知識點整理? 一、平行四邊形 1、平行四邊形的性質定理:,我來為大家科普一下關于九年級數學一二三單元知識點整理?以下内容希望對你有幫助!

九年級數學一二三單元知識點整理(九年級數學上冊三單元重要知識點總結)1

九年級數學一二三單元知識點整理

一、平行四邊形

1、平行四邊形的性質定理:

平行四邊形的對邊相等。

平行四邊形的對角相等(鄰角互補)。

平行四邊形的對角線互相平分。

2、平行四邊形的判定方法:

定義:兩組對邊分别平行的四邊形是平行四邊形。

判定定理:兩組對邊分别相等的四邊形是平行四邊形。

一組對邊平行且相等的四邊形是平行四邊形。

兩組對角分别相等的四邊形是平行四邊形。

對角線互相平分的四邊形是平行四邊形。

二、矩形

1、矩形的性質定理:

矩形的四個角都是直角。

矩形的對角線相等。

2、矩形的判定方法:

定義:有一個角是直角的平行四邊形是矩形。

判定定理:有三個角是直角的四邊形是矩形。

對角線相等的平行四邊形是矩形。

(對角線相等且互相平分的四邊形是矩形。)

三、菱形

1、菱形的性質定理:

菱形的四條邊都相等。

菱形的對角線相等,并且每條對角線平分一組對角。

2、菱形的判定方法:

定義:有一組鄰邊相等的平行四邊形是菱形。

判定定理:四條邊都相等的四邊形是菱形。

對角線互相垂直的平行四邊形是菱形。

(對角線互相垂直且平分的四邊形是菱形。)

四、正方形

1、正方形的性質定理:

正方形的四個角都是直角,四條邊都相等。

正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角。

2、正方形的判定定理:

l 有一個角是直角的菱形是正方形。

l 有一組鄰邊相等的矩形是正方形。

l 有一個角是直角且有一組鄰邊相等的平行四邊形是正方形。

l 對角線相等的菱形是正方形。

l 對角線互相垂直的矩形是正方形。

l 對角線相等且互相垂直的平行四邊形是正方形。

l 對角線相等且互相垂直、平分的四邊形是正方形。

五、等腰梯形

1、等腰梯形的性質定理:

等腰梯形的兩條對角線相等。

等腰梯形在同一底上的兩個角相等。

2、等腰梯形的判定方法:

定義:兩腰相等的梯形是等腰梯形。

判定定理:在同一底上的兩個角相等的梯形是等腰梯形。

六、三角形的中位線

1、定義:

連接三角形兩邊中點的線段叫做三角形的中位線。

2、性質定理:

三角形的中位線平行于第三邊,且等于第三邊的一半。

七、其他定理或結論:

1、夾在兩條平行線間的平行線段相等。

2、三角形的一條中位線與第三邊上的中線互相平分。

3、菱形的面積等于其對角線乘積的一半。

4、連接三角形每兩邊的中點,就得到了四個全等的三角形和三個平行四邊形,所得的三角形的周長是原三角形周長的 ,所得的三角形的面積是原三角形面積的 。

八、中點四邊形

1. 依次連接四邊形各邊中點所得到的新四邊形的形狀,取決于原四邊形兩條對角線的位置關系和數量關系,即兩條對角線是否相等或者是否垂直。

2. 依次連接任意四邊形各邊的中點,就得到一個平行四邊形。

3. 依次連接平行四邊形各邊的中點,就得到一個平行四邊形。

4. 依次連接矩形各邊的中點,就得到一個菱形。

5. 依次連接菱形各邊的中點,就得到一個矩形。

6. 依次連接正方形各邊的中點,就得到一個正方形。

7. 依次連接等腰梯形各邊的中點,就得到一個菱形。

8. 依次連接兩條對角線相等的四邊形各邊的中點,就得到一個菱形。

9. 依次連接兩條對角線互相垂直的四邊形各邊的中點,就得到一個矩形。

10. 依次連接兩條對角線相等且互相垂直的四邊形各邊的中點,就得到一個正方形

來源:中考網

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关生活资讯推荐

热门生活资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved