一、BGP的概念
BGP(Border Gateway Protocol,邊界網關協議)是一個距離矢量路由協議,和傳統的基于下一跳的IGP協議不同,它是基于AS(自治系統)的協議。BGP屬于外部網關路由協議,它解決的是AS之間的選路問題,也正是這樣,它更适合用于互聯網。BGP的關鍵在于理解BGP的報文,鄰居的建立、BGP路由屬性、選路原則等。
01自治系統是什麼?
自治系統(autonomous system,簡稱“AS”),是由同一個技術管理機構管理,使用統一選路策略(運行同一動态路由協議)的一組路由器的集合。自治系統的編号取值範圍是1~65535。其中1~64511是互聯網上注冊的公有AS号類,類似于公有IP地址,是全球唯一且不可重複使用的;64512~65535是私有AS号,類似于私有IP地址,可以重複使用但是互聯網上不可見。
02動态路由分類
動态路由協議有很多分類方法,按自治系統分類、按協議類型分類是最常用的兩種。
1、按自治系統分類:
IGP:内部網關路由協議,主要包含RIP、OSPF、ISIS、EIGRP(思科私有協議)。IGP路由協議運行在AS内部,解決的是AS内部的選路問題。主要作用是發現、計算路由。
EGP:外部網關路由協議,通常就是指BGP,它運行在AS與AS之間,解決的是AS之間的選路問題。BGP的主要作用是控制路由條目的傳播和選擇最優路由。
一般會先使用IGP協議在自治系統内部計算和發現路由條目,再通過BGP協議将IGP協議産生的路由傳遞至其他的AS(自治系統)。
03BGP的特征
BGP解決的是AS之間的路由學習問題,當今互聯網是全球互聯,在中國,互聯網運營商有移動、電信和聯通。每個公司都有自己的自治系統,并且内部運行IGP協議。但是互聯網又要求互聯,所以通過BGP就可以在電信和聯通等之間學習對方的AS内部路由,使電信和聯通的用戶之間互相通信。
BGP具有以下特征:
傳輸協議:TCP,端口号179
BGP是外部路由協議,用來在AS之間傳遞路由信息
是一種增強的路徑矢量路由協議
擁有可靠的路由更新機制
具備豐富的Metric(一種度量标準)度量方法
無環路協議設計
為路由條目附帶多種屬性信息
支持CIDR(就是支持子網劃分後地址域間選路)
豐富的路由過濾和路由策略
無需周期性更新
路由更新時隻發送增量路由
周期性發送KeepAlive(保活)報文以保持 TCP連通性
二、BGP的工作原理
BGP是跨公網、跨AS(自治系統)的路由協議,可以在AS之間學習路由。BGP的動态學習路由也是基于鄰居,隻有鄰居關系正常,BGP才可以正常工作。
01BGP鄰居關系
運行BGP的路由器通常被稱為BGPSpeaker(發言者),相互之間傳遞報文的speaker之間互稱為對等體(peer)。BGP鄰居關系的建立、更新和删除是通過對等體之間的5種報文、6種狀态機和5個表等信息來完成,最終形成BGP鄰居。
(1)BGP報文類型及作用:BGP報文頭中的type定義了BGP的報文類型。BGP對等體之間通過5種報文進行路由信息的交互,5種報文分别有:Open、Update、Notification、KeepAlive和Route-Refresh。
Open報文:是TCP連接建立後發送的第一個報文,用于建立BGP對等體之間的連接關系,主要包括BGP版本、本地AS編号、Holdtime(維持時間)等信息。
update報文:update報文用來在BGP對等體之間更新路由信息,update報文可以通告多條屬性相同的可達路由信息,也可撤銷多條不可達路由信息。
Notification報文:當BGP檢測到錯誤狀态時,立刻向對等體發出Notification報文,之後BGP連接就會立即中斷。不管當前BGP狀态處于何種狀态,隻要收到Notification報文就會返回idle狀态。
Route-Refresh報文:用來告知對等體本地所支持路由的刷新能力,在所有BGP路由器擁有Route-Refresh能力的情況下,如果BGP入口路由策略發生了變化,本地BGP路由器會向對等體發送Route-Refresh報文,收到此消息的對等體會将其路由信息重新發給本地BGP路由器。
KeepAlive報文:該報文在對等體之間周期性發送,用以保持連接的有效性,類似于OSPF協議中的hello包。
(2)BGP狀态:BGP狀态描述的是BGP鄰居的建立過程,BGP狀态共有六種,分别是Idle(空閑)、Connect(連接)、Active(活動)、OpenSent(打開發送)、OpenConfirm(打開确認)和Established(建立成功)。
Idle狀态:BGP拒絕任何進入的連接請求,Idle狀态是BGP的初始狀态。
Connect狀态:該狀态下,BGP等待TCP連接的建立完成後在決定後續操作。
Active狀态:該狀态下,BGP将嘗試進行TCP連接的建立,是BGP的中間狀态。
OpenSent狀态:該狀态下,BGP等待對等體的Open報文,并對收到的Open報文中的AS号、版本号、Holdtime等進行檢查。
OpenConfirm狀态:在該狀态下,BGP等待KeepAlive或Notification報文。
Established狀态:在該狀态下,BGP可以在對等體之間交換所有報文,也是BGP正常工作的狀态。
在BGP對等體建立的過程中,通常可見的三種狀态是Idle、Active、Established。BGP對等體雙方的狀态必須都為Established,BGP鄰居關系才能成立,雙方通過Update報文交換路由信息。
(3)BGP數據庫:BGP數據庫是BGP正常工作所需要的存儲空間,基于保存的内容不同,可分為以下幾種:
IP路由表(IP-RIB):全局路由信息庫,包括所有最優的IP路由信息。
BGP路由表(Loc-RIB):BGP路由信息庫,包括本地BGP Speaker通告的路由信息,将其中最優路由添加到IP路由表中。注意:先要關注BGP路由表、若BGP路由表中不是最優路由,則無法在IP路由表中可見。
鄰居表:對等體鄰居清單列表,包括對等體兩端的鄰居信息即鄰居列表。
Adi-RIB-In:對等體宣告給本地Speaker的未處理的路由信息庫。
Adj-RIB-Out:本地Speaker宣告給指定對等體的路由信息庫。
(4)BGP鄰居關系類型:在BGP中大緻可分為兩種鄰居關系:IBGP鄰居和EBGP鄰居。
IBGP:同一個AS内部的BGP鄰居關系,IBGP鄰居通常是指運行BGP協議的對等體兩端均在同一個AS域内,屬于同一個BGP AS内部。
EBGP:AS之間的BGP鄰居關系,EBGP鄰居通常是指運行BGP協議的對等體兩端分别在不同的AS内。
BGP鄰居的AS号和本端的AS号相同就為IBGP(鄰居),不同就是EBGP鄰居。
IGP(内部網關協議,如OSPF)建立鄰居一般要求三層設備直連,并且通過廣播或組播建立鄰居關系。而BGP(外部網關協議)的鄰居關系是基于TCP的,也就是說隻要讓TCP/IP可達,無論是否直連,BGP對等體彼此之間就可以建立鄰居關系。所以BGP建立鄰居之前首先要考慮的就是對等體之間的路徑可達(是否存在路由,可以ping通)。務必要通過IGP或者靜态路由使對等體兩端互通。
02通告BGP路由的方法
BGP路由是通過BGP命令通告而成的,而通告BGP路由的方法有兩種:network和Import。
(1)network方式:
使用network命令可以将當前設備路由表中的路由(非BGP)發布到BGP路由表中并通告給鄰居,和OSPF中使用network命令的方式大同小異,隻不過在BGP宣告時,隻需要宣告網段 掩碼數即可,如:network 12.12.0.0 16。
(2)Import方式:
使用Import命令可以将該路由器學到的路由信息重分發到BGP路由表中,是BGP宣告路由的一種方式,可以引入BGP的路由包括:直連路由、靜态路由及動态路由協議學到的路由。其命令格式與在RIP中重分發OSPF差不多。
03BGP對等體的交互原則
BGP設備會将最優路由加入BGP路由表,形成BGP路由。BGP設備與對等體建立鄰居關系後,采用以下交互原則:
從IBGP對等體獲得的BGP路由,BGP設備隻傳遞給它的EBGP對等體。
從EBGP對等體獲得的BGP路由,BGP設備傳遞給它所有EBGP和IBGP對等體(對等體是IBGP隻能傳遞一跳,對等體是EBGP則不限制)
當存在多條到達同一目的地址的有效路由時,BGP設備隻将最優路由發布給對等體
路由更新時,BGP設備隻發送更新的BGP路由
所有對等體發送的路由,BGP設備都會接收
所有EBGP對等體在傳遞過程中下一跳改變
所有IBGP對等體在傳遞過程中下一跳不變(需要特别注意)
默認EBGP傳遞時 TTL值為1(需要特别注意)
默認IBGP傳遞時 TTL值為255
04更新源建立鄰居關系
這個概念說白了就是在指定對等體時,使用對方的loopback口,因為該接口比任何物理接口都要穩定,隻要設備在運行,loopback口就不會關閉,隻要有一條鍊路可以和對方的loopback地址通信,就不會造成BGP狀态的改變,若使用物理接口,一旦這個物理接口down掉,那麼BGP也就完了,所以這種使用loopback口建立BGP鄰居的方法稱為更新源建立鄰居,通常會在同一個AS内使用冗餘鍊路來确保BGP的穩定性。(若在不同AS内使用對端路由器的loopback地址來建立鄰居關系,需要改變兩個路由器上的TTL值,具體解釋請參考博文末尾的配置總結)
如在上圖中,三個路由器同在AS 100區域中,若R1和R3要使用更新源建立鄰居關系,那麼配置如下:
R1路由器:
[R1]bgp 100
[R1-bgp]router-id 1.1.1.1
[R1-bgp]peer 3.3.3.3 as-number 100
[R1-bgp]peer 3.3.3.3 connect-interface LoopBack0
R3路由器(相關命令解釋參考R1路由器的配置):
[R3]bgp 100
[R3-bgp]router-id 3.3.3.3
[R3-bgp]peer 1.1.1.1 as-number 100
[R3-bgp]peer 1.1.1.1 connect-interface LoopBack0
注意:本地loopback接口先要讓對等體可達(就是可以ping通對方的loopback地址),需要手動添加對等體環回接口的路由條目或者使用OSPF、RIP等自動學習對方環回接口的路由。
05保證IBGP下一跳可達
在AS邊緣的BGP設備,會接收到它的EBGP對等體鄰居傳遞過來的BGP路由信息。上面說過:所有EBGP對等體在傳遞過程中下一跳改變, 所有IBGP對等體在傳遞過程中下一跳不變。上個圖來直觀的說一下:
圖中,用A——J分别來代替路由器的接口IP地址,結合所有EBGP對等體在傳遞過程中下一跳改變, 所有IBGP對等體在傳遞過程中下一跳不變這個結論,可以看到圖中存在什麼問題(自己看圖理解吧,是在是懶癌晚期,不想解釋了),就是圖中R3路由器以後的路由器收到的路由條目中的下一跳是錯誤的,解決辦法就是在R3和R5路由器上對R4和R6宣稱下一跳為它自己,然後就會發現,R4學到的下一跳地址是E。R6學到的下一跳就是I。這隻是解決了R1宣告路由時出現的問題,那麼如果現在R6又宣告了一條路由,就還需要在R4和R2路由器上對R3和R1宣稱下一跳為它自己。這樣才算保證了IBGP的下一跳可達。
配置如下(就拿一個路由器來舉例,前三條配置命令的解釋可以參考上面的注釋,主要是最後一條命令,來改變路由的下一跳):
[R3]bgp 200
[R3-bgp]router-id 3.3.3.3
[R3-bgp]peer 34.1.1.4 as-number 200
[R3-bgp]peer 34.1.1.4 next-hop-local
06EBGP多跳
這個好理解,由于默認BGP中EBGP鄰居之間的TTL值為1,(TTL,數據包的生命周期值,每經過一個路由器該值會-1,當該值為0後,數據包将會被丢棄)。若EBGP對等體非直連(通信時需要經過一個以上的路由器,TTL值就不夠用了),TTL值限制會使非直連的對等體無法正常建立鄰居關系,所以需要用EBGP多跳的命令來解決非直連的鄰居關系。如下圖,若不配置EBGP多跳,那麼R1和R3将無法正常建立鄰居關系:
配置上圖中的R3路由器多跳(R1路由器也需要進行類似的配置,進而改變TTL值,這裡隻拿R3為例):
R3 配置如下:
[R3]bgp 200
[R3-bgp]router-id 3.3.3.3
[R3-bgp]peer 12.0.0.1 as-number 100
[R3-bgp]peer 12.0.0.1 ebgp-max-hop 2 <!--指明跳數為2,也就是TTL值為2-->
07控制BGP選路
BGP協議包含很多路由屬性,這些屬性可以非常靈活的控制BGP的選路。
BGP的屬性分為共有必遵,公認任意、可選過渡可選非過渡四大類,如下表為BGP的屬性及對應的分類:
(1)公有必遵:所有BGP路由器都可以識别,且必須存在update報文中。
(2)公有任意:所有BGP路由器都可以識别,但不要求必須存在于update報文中,可以根據具體情況來決定是否添加到Update報文中。
(3)可選過渡:BGP路由器可以選擇是否在Update報文中攜帶這種屬性。接收的路由器如果不識别這種屬性,可以轉發給鄰居路由器(這就是過渡的含義),鄰居路由器可能會識别并使用這種屬性。
(4)可選非過渡:BGP路由器可以選擇是否在Update報文中攜帶這種屬性。在整個路由發布的路徑上,如果部分路由器不能識别這種屬性,可能會導緻該屬性無法發揮作用。因為接收的路由器如果不識别這種屬性,将丢棄這種屬性,而不再轉發給鄰居路由器。
BGP屬性的介紹:
BGP常用的屬性有:Origin、AS-PATH、Next-Hop、Local-Perf和MED等。
(1)Origin(起源)屬性:屬于公有必遵,用來定義路徑信息的來源,其作用是标記一條路由是怎麼成為BGP路由的。它有以下三種類型:
IGP(I):優先級最高,通過Network命令注入BGP路由表的路由,其Origin屬性為IGP。
EGP(e):優先級次之。通過EGP得到的路由信息,其Origin屬性為EGP。
Incomplete(?):優先級最低。通過其他方式學習到的路由信息。如BGP通過Import-route命令重分發引入的路由,其Origin屬性為Incomplete。可以使用 display bgp routing-table 命令查看,将顯示在最後一列,其列名是Path/Ogn
(2)AS-PATH(AS路徑)屬性:該屬性按照矢量順序記錄某條路由從本地到目的地址要經過的所有AS編号,在接受路由時,設備如果發現AS-PATH列表中有本AS号,則不接收該路由,從而避免了AS間的路由環路。
若在查看BGP路由表時,看到了AS編号,如(100,200,300),則表示該路由條目是經過了AS300、AS200和AS100傳播到本設備,其中AS100是離本設備最近的AS。
(3)Next-Hop(下一跳)屬性:又回到保證IBGP下一跳可達這個問題了,這麼說吧,在前面提到的保證IBGP下一跳可達,就是利用了Next-Hop屬性,不解釋了。
(4)Local-Perf屬性:用來标識BGP路由的優先級,,用于判斷流量離開AS時的最佳路由。當BGP的設備通過不同的IBGP對等體得到目的地址相同但是下一跳不同的多條路由時,将選擇優先級Local-Perf屬性值較高的路由。Local-Perf屬性僅在IBGP對等體之間有效,不會通告給其他AS,本地優先級在AS内部傳遞,數值越高越優先。默認優先級為100,可以手動更改。下面是我在網上找到的一個配置圖(可以使用ACL來定義一些流量,也可以直接修改本地的優先級,下圖是基于ACL來對不同網段設置不同的優先級)。
(5)MED屬性:用于判斷流量進入鄰居AS時的最佳路由,當一個運行BGP的設備通過不同的EBGP對等體得到目的地址一樣但是下一跳不同的多條路由時,在其他條件相同的情況下,将選擇MED 值較小者作為最佳路由,用來改變下遊的選路。
MED屬性僅在相鄰兩個AS之間傳遞,收到此屬性的AS一方不會再将其通告給其他任何第三方AS。MED屬性可以手動配置,默認為0,具體配置看圖吧:
在RT3上配置如下可以控制AS200中兩個路由器的選路:
08BGP的選路原則
BGP 選路原則(1)若去往目的網絡的路由下一跳不可達,則可以忽略此路由(2)Preferred-Value優先級以數值高的路由優先(3)Local-Preference優先級以數值高的路由優先(4)聚合路由優先級高于非聚合路由(5)本地手動聚合路由的優先級高于本地自動聚合的路由(6)本地通過Network命令引入的路由的優先級高于本地通過Import-route命令引入的路由(7)AS路徑長度最短(最少個數)的路徑優先級高
(8)比較Origin屬性,IGP優先級高于EGP,EGP優先級高于Incomplete(9)選擇MED優先級較小的路由(10)EBGP路由優先級高于IBGP路由(11)BGP優先選擇到BGP下一跳的IGP度量低的路徑當以上全部相同,則為等價路由,可以負載分擔(注:AS-PATH必須一緻),當負載分擔時,以下3條原則無效
(12)比較Cluster-List長度,短者優先(13)比較Originator_ID(如果沒有Originator_ID,則用Router ID比較),選擇數值較小的路徑(14)比較對等體的IP地址,選擇IP地址數值最小的路徑
三、BGP的配置實例
上面的BGP理論啰嗦了那麼多,其實真正的配置倒很簡單(這也符合網絡的特色),來個實驗圖配置一下吧!網絡拓撲如下:
01需求如下
1、AS 200内部使用OSPF協議使AS 200内部互通,并在AS 200内部各個路由器上都運行BGP協議(R1和R2、R3建立鄰居關系,R4和R2、R3及R5建立鄰居關系,),各個AS之間運行BGP協議。
2、分别在R1和R5使用BGP協議宣告21.0.0.0/24和20.0.0.0/24,使所有路由器學到這兩條路由信息。
3、通過BGP的屬性控制選路,實現PC 1→R1→R2→R4→R5→PC 2→R5→R4→R3→R2→R1→PC 1的路由通信。順便将多個控制選路的方法測試一下。
4、在R2、R3和R4路由器上分别向BGP協議中注入本地的OSPF路由信息,使全網互通(雖然在第三個要求實現了控制路由選路,但是并不意味着PC1可以ping通任何一個路由器,比如R2)。
5、為了引出EBGP多跳的配置,嘗試一下R1和R4直接建立對等體關系。
02開始配置
1、自行配置各個PC、路由器物理接口及loopback接口的IP地址(我是懶癌晚期患者,請多多擔待),路由器IP配置參考:
<R1>sys
[R1]in g0/0/0
[R1-GigabitEthernet0/0/0]ip add 12.1.1.1 24
[R1-GigabitEthernet0/0/0]int loop 0
[R1-LoopBack0]ip add 1.1.1.1 32
2、配置AS 200内部的OSPF路由協議:
R2路由器配置如下:
[R2]ospf 1
[R2-ospf-1]area 0
[R2-ospf-1-area-0.0.0.0]net 2.2.2.2 0.0.0.0
[R2-ospf-1-area-0.0.0.0]net 12.1.1.0 0.0.0.255
[R2-ospf-1-area-0.0.0.0]net 24.1.1.0 0.0.0.255
R3路由器配置如下(相應注釋請參考R2):
[R3]ospf 1
[R3-ospf-1]area 0
[R3-ospf-1-area-0.0.0.0]net 3.3.3.3 0.0.0.0
[R3-ospf-1-area-0.0.0.0]net 13.1.1.0 0.0.0.255
[R3-ospf-1-area-0.0.0.0]net 34.1.1.0 0.0.0.255
R4路由器配置如下(相應注釋請參考R2):
[R4]ospf 1
[R4-ospf-1]area 0
[R4-ospf-1-area-0.0.0.0]net 4.4.4.4 0.0.0.0
[R4-ospf-1-area-0.0.0.0]net 24.1.1.0 0.0.0.255
[R4-ospf-1-area-0.0.0.0]net 34.1.1.0 0.0.0.255
3、開始配置BGP,使相應路由器為鄰居關系:
R1配置如下:
[R1]bgp 100
[R1-bgp]router-id 1.1.1.1
[R1-bgp]peer 12.1.1.2 as 200
[R1-bgp]peer 13.1.1.3 as 200
[R1-bgp]network 21.0.0.0 24
由于配置BGP時,很多重複性的命令,所以,沒有特别不一樣的配置時,就不寫注釋了
R2配置如下:
[R2]bgp 200
[R2-bgp]router-id 2.2.2.2
[R2-bgp]peer 12.1.1.1 as 100
[R2-bgp]peer 4.4.4.4 as 200
[R2-bgp]peer 4.4.4.4 connect-interface LoopBack 0
[R2-bgp]peer 4.4.4.4 next-hop-local
R3配置如下:
[R3]bgp 200
[R3-bgp]router-id 3.3.3.3
[R3-bgp]peer 13.1.1.1 as 100
[R3-bgp]peer 4.4.4.4 as 200
[R3-bgp]peer 4.4.4.4 connect-interface LoopBack 0
[R3-bgp]peer 4.4.4.4 next-hop-local
R4配置如下:
[R4]bgp 200
[R4-bgp]router-id 4.4.4.4
[R4-bgp]peer 2.2.2.2 as 200
[R4-bgp]peer 3.3.3.3 as 200
[R4-bgp]peer 2.2.2.2 next-hop-local
[R4-bgp]peer 3.3.3.3 next-hop-local
[R4-bgp]peer 2.2.2.2 connect-interface LoopBack 0
[R4-bgp]peer 3.3.3.3 connect-interface LoopBack 0
[R4-bgp]peer 45.1.1.5 as 300
R5配置如下:
[R5]bgp 300
[R5-bgp]router-id 5.5.5.5
[R5-bgp]peer 45.1.1.4 as 200
[R5-bgp]network 20.0.0.0 24
現在BGP的鄰居關系已經建立完成,可以通過以下命令查看:
[R1]dis bgp peerBGP local router ID : 1.1.1.1Local AS number : 100Total number of peers : 2 Peers in established state : 2Peer V AS MsgRcvd MsgSent OutQ Up/Down State PrefRcv12.1.1.2 4 200 5 8 0 00:02:11 Established 113.1.1.3 4 200 7 10 0 00:04:34 Established 1
至此,PC 1已經可以和PC 2進行通信了,當然是BGP協議做的咯,但是現在除了非直連網段及AS 200内部路由器以外,也隻有PC1和PC2可以通信,如PC1并不能ping通R2路由器。
4、開始做第三個需求,通過BGP的屬性控制選路,實現PC 1→R1→R2→R4→R5→PC 2→R5→R4→R3→R2→R1→PC 1的路由通信。
先使用tracert命令查看PC1和PC2通信時的路由,看看都是經過哪個路由器。
PC1到達PC5所經過的路由器如下:
PC>tracert 20.0.0.1 #使用tracert命令進行查看
traceroute to 20.0.0.1, 8 hops max
(ICMP), press Ctrl C to stop1 21.0.0.254 <1 ms 16 ms 15 ms2 12.1.1.2 16 ms 15 ms 16 ms3 24.1.1.4 31 ms 32 ms 31 ms4 45.1.1.5 31 ms 47 ms 31 ms5 *20.0.0.1 31 ms 32 ms
PC5到達PC1所經過的路由器如下:
PC>tracert 21.0.0.1
traceroute to 21.0.0.1, 8 hops max
(ICMP), press Ctrl C to stop1 20.0.0.254 15 ms <1 ms 16 ms2 45.1.1.4 16 ms 31 ms 16 ms3 24.1.1.2 31 ms 31 ms 31 ms4 12.1.1.1 47 ms 16 ms 47 ms5 21.0.0.1 31 ms 31 ms 31 ms
來吧,開始配置選路問題(共三個方法可實現):
實現方法1:修改Local-Perf屬性來改變R3路由器的優先級
在R3路由器上配置如下:
[R3]route-policy lop permit node 10
Info: New Sequence of this List.
[R3-route-policy]apply local-preference 222
[R3-route-policy]quit
[R3]bgp 200
[R3-bgp]peer 4.4.4.4 route-policy lop export
[R3-bgp]quit
[R3]quit<R3>reset bgp all
此時再查看PC5到達PC1所經過的路由器,就發現中間不經過R2路由器,而經過了R3路由器到達的PC1,如下:
PC>tracert 21.0.0.1
traceroute to 21.0.0.1, 8 hops max
(ICMP), press Ctrl C to stop
1 20.0.0.254 <1 ms 16 ms 16 ms2 45.1.1.4 15 ms 16 ms 31 ms3 34.1.1.3 31 ms 32 ms 31 ms4 13.1.1.1 47 ms 31 ms 47 ms5 *21.0.0.1 47 ms 31 ms
實現方法2:使用AS-PATH屬性控制選路
為了還原最初走R2的效果,需要清除上一步R3路由器配置的Local-Perf屬性,在R3路由器執行以下命令進行删除:
[R3]bgp 200
[R3-bgp]undo peer 4.4.4.4 route-policy lop export
删除後,稍等會可以自行查看,PC2和PC1時是否又恢複了走R2路由器而不走R3。
然後在R2路由器修改AS-PATH屬性(就是讓R2路由器在向R4路由器通告21.0.0.0網段時,告訴R4經過了好多區域,當然,這些區域是虛造出來的,這個區域數肯定比R3所經過的區域數多,所以R4就會選擇走R3而不走R2,因為要走最優路徑嘛):
R2配置如下:
[R2]route-policy as permit node 10
Info: New Sequence of this List.
[R2-route-policy]apply as-path 123 123 123 add
[R2-route-policy]quit
[R2]bgp 200
[R2-bgp]peer 4.4.4.4 route-policy as export
[R2-bgp]quit
[R2]quit<R2>reset bgp all
現在在PC2再測試一下,會發現又開始走R3路由器了:
PC>tracert 21.0.0.1
traceroute to 21.0.0.1, 8 hops max
(ICMP), press Ctrl C to stop
1 20.0.0.254 16 ms <1 ms 15 ms2 45.1.1.4 32 ms 15 ms 31 ms3 34.1.1.3 16 ms 31 ms 32 ms4 13.1.1.1 31 ms 31 ms 31 ms5 *21.0.0.1 47 ms 31 ms
實現方法3:使用MED屬性控制選路
在一開始測試過,PC1去往PC5是經過R2路由器,而不是R3路由器,那麼現在就增加R2路由器的MED屬性并通告給R1路由器,使它經過R3路由器而不是R2路由器。
[R2]route-policy med permit node 10
Info: New Sequence of this List.
[R2-route-policy]apply cost 500
[R2-route-policy]quit
[R2]bgp 200
[R2-bgp]peer 12.1.1.1 route-policy med export
[R2-bgp]quit
[R2]quit<R2>reset bgp all
在PC1測試一下:
PC>tracert 20.0.0.1
traceroute to 20.0.0.1, 8 hops max
(ICMP), press Ctrl C to stop
1 21.0.0.254 16 ms <1 ms 16 ms2 13.1.1.3 15 ms 16 ms 15 ms3 34.1.1.4 47 ms 16 ms 16 ms4 45.1.1.5 31 ms 31 ms 31 ms5 *20.0.0.1 32 ms 31 ms
已經改走R3路由器了,說明配置生效,通過這三個選路的實現方法不難發現,BGP控制選路主要都是通過BGP屬性值來調整完成的。BGP包含大量的屬性,而這些屬性直接影響着選路,所有BGP比IGP具有更強大的控制能力。
5、第四個需求:在R2、R3和R4路由器上分别向BGP協議中注入本地的OSPF路由信息,使全網互通。
R2路由器:
[R2]bgp 200[R2-bgp]import-route ospf 1
其餘路由器配置基本一緻:
R3:
[R3]bgp 200[R3-bgp]import-route ospf 1
R4:
[R4]bgp 200[R4-bgp]import-route ospf 1
自行查看各路由器的路由條目驗證吧!文章末尾有相關查看命令。
6、第五個需求:嘗試一下R1和R4直接建立對等體關系。
R1配置如下:
[R1-bgp]bgp 100[R1-bgp]peer 34.1.1.4 as 200[R1-bgp]peer 34.1.1.4 ebgp-max-hop 2
R4配置如下
[R4]bgp 200
[R4-bgp]peer 13.1.1.1 as 100
[R4-bgp]peer 13.1.1.1 eb
[R4-bgp]peer 13.1.1.1 ebgp-max-hop 2
查看驗證(可能需要等一會才可建立鄰居成功,等待時間不會超過兩分鐘)
[R1-bgp]dis bgp peer BGP local router ID : 1.1.1.1Local AS number : 100Total number of peers : 3 Peers in established state : 3Peer V AS MsgRcvd MsgSent OutQ Up/Down State PrefRcv12.1.1.2 4 200 27 38 0 00:17:49 Established 813.1.1.3 4 200 55 70 0 00:45:35 Established 834.1.1.4 4 200 12 13 0 00:00:02 Established 8
相關查看命令:
[R4]dis ip routing-table
[R4]dis ospf routing
[R4]dis bgp peer
[R1-bgp]dis bgp peer
四、配置總結
在配置過程中需要注意以下幾點,以免出現錯誤:
1、在建立鄰居關系,指定對端路由器地址前,務必保證可以ping通對端路由器。
2、AS内部建立BGP鄰居關系時,最好指定對方的Loopback地址,但不要忘記更新源,參考命令:“ [R3-bgp]peer 4.4.4.4 connect-interface LoopBack 0 ” 。
3、若在AS内部有一個以上的的路由器運行着BGP協議,對于AS内部來說,這也是IBGP協議,不要忘記更改下一跳的屬性,也就是前面提到的“保證IBGP下一跳可達”,命令參考:“[R4-bgp]peer 2.2.2.2 next-hop-local”
4、前面說到,若在兩個不同AS區域的路由器上建立鄰居關系,哪怕這兩個路由器是直連的,也要改變它的TTL值,目的是讓路由器之間用來建立鄰居關系的數據包,可以多經過幾個路由器,再被丢棄。
因為雖然不同AS的路由器是直連的,隻有一跳即可,但是由于指定的是對端路由器的loopback地址,loopback地址的網段肯定與路由器直連的網段不是同一個網段,路由器收到該數據包後就把它當成另一個路由器上的地址了。
所以在兩個AS間建立鄰居關系時,一定要改變它的跳數,IBGP之間建立鄰居關系就不用改變TTL值了,因為在IBGP中,數據包的TTL值默認為255。改變TTL值的參考命令:“ [R1-bgp]peer 34.1.1.4 ebgp-max-hop 2 ”
這條命令,需要跳幾下就把數值設置為幾就行,可以比實際跳數大,但是不能比實際跳數小。
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!