tft每日頭條

 > 知識

 > em算法原理

em算法原理

知識 更新时间:2024-12-04 11:41:26

  在統計計算中,最大期望(EM)算法是在概率(probabilistic)模型中尋找參數最大似然估計或者最大後驗估計的算法,其中概率模型依賴于無法觀測的隐藏變量(LatentVariable)。最大期望經常用在機器學習和計算機視覺的數據聚類(DataClustering)領域。

  最大期望算法經過兩個步驟交替進行計算。

  第一步是計算期望(E),利用對隐藏變量的現有估計值,計算其最大似然估計值。

  第二步是最大化(M),最大化在E步上求得的最大似然值來計算參數的值。

  M步上找到的參數估計值被用于下一個E步計算中,這個過程不斷交替進行。

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关知識资讯推荐

热门知識资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved