tft每日頭條

 > 教育

 > 學好高中數學最有效的方法

學好高中數學最有效的方法

教育 更新时间:2024-12-29 16:56:43

如何學好高中數學,高中數學知識點總結歸納,這些知識點一定要知掌握。希望對您們有幫助。如果覺得很不錯,歡迎點評和分享~感謝你的閱讀與支持!

學好高中數學最有效的方法(如何學好高中數學)1

必修一

一、集合

一、集合有關概念

集合的含義

集合的中元素的三個特性:

元素的确定性如:世界上的山

元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N*或N 整數集Z有理數集Q實數集R

列舉法:{a,b,c……}

描述法:将集合中的元素的公共屬性描述出來,寫在大括号内表示集合的方法。{x(R|x-3>2},{x|x-3>2}

語言描述法:例:{不是直角三角形的三角形}

Venn圖:

4、集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A(A

②真子集:如果A(B,且A(B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A(B,B(C,那麼A(C

④如果A(B同時B(A那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集

二、函數

1、函數定義域、值域求法綜合

2.、函數奇偶性與單調性問題的解題策略

3、恒成立問題的求解策略

4、反函數的幾種題型及方法

5、二次函數根的問題——一題多解

&指數函數y=a^x

a^a*a^b=a^a b(a>0,a、b屬于Q)

(a^a)^b=a^ab(a>0,a、b屬于Q)

(ab)^a=a^a*b^a(a>0,a、b屬于Q)

指數函數對稱規律:

1、函數y=a^x與y=a^-x關于y軸對稱

2、函數y=a^x與y=-a^x關于x軸對稱

3、函數y=a^x與y=-a^-x關于坐标原點對稱

&對數函數y=loga^x

如果,且,,,那麼:

·+;

-;

注意:換底公式

(,且;,且;).

幂函數y=x^a(a屬于R)

1、幂函數定義:一般地,形如的函數稱為幂函數,其中為常數.

2、幂函數性質歸納.

(1)所有的幂函數在(0, ∞)都有定義并且圖象都過點(1,1);

(2)時,幂函數的圖象通過原點,并且在區間上是增函數.特别地,當時,幂函數的圖象下凸;當時,幂函數的圖象上凸;

(3)時,幂函數的圖象在區間上是減函數.在第一象限内,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.

方程的根與函數的零點

1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐标。

即:方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

(代數法)求方程的實數根;

(幾何法)對于不能用求根公式的方程,可以将它與函數的圖象聯系起來,并利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

(2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

三、平面向量

向量:既有大小,又有方向的量.

數量:隻有大小,沒有方向的量.

有向線段的三要素:起點、方向、長度.

零向量:長度為的向量.

單位向量:長度等于個單位的向量.

相等向量:長度相等且方向相同的向量

&向量的運算

加法運算

AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。

對于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運算定律。

減法運算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數乘運算

實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ=0時,λa=0。

設λ、μ是實數,那麼:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法運算、減法運算、數乘運算統稱線性運算。

向量的數量積

已知兩個非零向量a、b,那麼|a||b|cosθ叫做a與b的數量積或内積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。

a?b的幾何意義:數量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個向量的數量積等于它們對應坐标的乘積的和。

四、三角函數

1、善于用“1“巧解題

2、三角問題的非三角化解題策略

3、三角函數有界性求最值解題方法

4、三角函數向量綜合題例析

5、三角函數中的數學思想方法

五、立體幾何初步

1、柱、錐、台、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的标準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的标準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱台:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的标準分為三棱态、四棱台、五棱台等

表示:用各頂點字母,如五棱台

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

六(1)指數函數的定義域為所有實數的集合,這裡的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函數的值域為大于0的實數集合。

(3)函數圖形都是下凹的。

(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分别接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分别接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數總是在某一個方向上無限趨向于X軸,永不相交。

(7)函數總是通過(0,1)這點。

(8)顯然指數函數*。

奇偶性

定義

一般地,對于函數f(x)

(1)如果對于函數定義域内的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。

(2)如果對于函數定義域内的任意一個x,都有f(-x)=f(x),那麼函數f(x)就叫做偶函數。

(3)如果對于函數定義域内的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對于函數定義域内的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那麼函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

今天的高中數學知識點就跟大家分享到這裡。

,

更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!

查看全部

相关教育资讯推荐

热门教育资讯推荐

网友关注

Copyright 2023-2024 - www.tftnews.com All Rights Reserved