天哲教育中考前講座:數學第十章
考點一、四邊形的相關概念 (3分)
1、四邊形
在同一平面内,由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。
2、凸四邊形
把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。
3、對角線
在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。
4、四邊形的不穩定性
三角形的三邊如果确定後,它的形狀、大小就确定了,這是三角形的穩定性。但是四邊形的四邊确定後,它的形狀不能确定,這就是四邊形所具有的不穩定性,它在生産、生活方面有着廣泛的應用。
5、四邊形的内角和定理及外角和定理
四邊形的内角和定理:四邊形的内角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的内角和定理:n邊形的内角和等于
180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、多邊形的對角線條數的計算公式
設多邊形的邊數為n,則多邊形的對角線條數為
。
考點二、平行四邊形 (3~10分)
1、平行四邊形的概念
兩組對邊分别平行的四邊形叫做平行四邊形。
平行四邊形用符号“□ABCD”表示,如平行四邊形ABCD記作“□ABCD”,讀作“平行四邊形ABCD”。
2、平行四邊形的性質
(1)平行四邊形的鄰角互補,對角相等。
(2)平行四邊形的對邊平行且相等。
推論:夾在兩條平行線間的平行線段相等。
(3)平行四邊形的對角線互相平分。
(4)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積。
3、平行四邊形的判定
(1)定義:兩組對邊分别平行的四邊形是平行四邊形
(2)定理1:兩組對角分别相等的四邊形是平行四邊形
(3)定理2:兩組對邊分别相等的四邊形是平行四邊形
(4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
考點三、矩形 (3~10分)
1、矩形的概念
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質
(1)具有平行四邊形的一切性質
(2)矩形的四個角都是直角
(3)矩形的對角線相等
(4)矩形是軸對稱圖形
3、矩形的判定
(1)定義:有一個角是直角的平行四邊形是矩形
(2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
4、矩形的面積
S矩形=長×寬=ab
考點四、菱形 (3~10分)
1、菱形的概念
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質
(1)具有平行四邊形的一切性質
(2)菱形的四條邊相等
(3)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(4)菱形是軸對稱圖形
3、菱形的判定
(1)定義:有一組鄰邊相等的平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
(3)定理2:對角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長×高=兩條對角線乘積的一半
考點五、正方形 (3~10分)
1、正方形的概念
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質
(2)正方形的四個角都是直角,四條邊都相等
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角
(4)正方形是軸對稱圖形,有4條對稱軸
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最後證明它是矩形(或菱形)
4、正方形的面積
設正方形邊長為a,對角線長為b
S正方形=
考點六、梯形 (3~10分)
1、梯形的相關概念
一組對邊平行而另一組對邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。
梯形中不平行的兩邊叫做梯形的腰。
梯形的兩底的距離叫做梯形的高。
兩腰相等的梯形叫做等腰梯形。
一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分類如下:
一般梯形
梯形 直角梯形
特殊梯形
等腰梯形
2、梯形的判定
(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。
(2)一組對邊平行且不相等的四邊形是梯形。
3、等腰梯形的性質
(1)等腰梯形的兩腰相等,兩底平行。
(3)等腰梯形的對角線相等。
(4)等腰梯形是軸對稱圖形,它隻有一條對稱軸,即兩底的垂直平分線。
4、等腰梯形的判定
(1)定義:兩腰相等的梯形是等腰梯形
(2)定理:在同一底上的兩個角相等的梯形是等腰梯形
(3)對角線相等的梯形是等腰梯形。
,
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!