不定積分∫x^a(lnx)^2dx的計算
主要内容:
通過多次分部積分法介紹不定積分∫x^a(lnx)^2dx的計算步驟。
通式推導:
∫x^a(lnx)^2dx
=1/(a 1)∫(lnx)^2dx^(a 1),以下第一次使用分部積分法,
=1/(a 1) (lnx)^2*x^(a 1) -1/(a 1)∫x^(a 1) d(lnx)^2
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)∫x^(a 1) *lnx*(1/x)dx
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)∫x^a*lnxdx
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)^2∫lnxdx^a11,以下第二次使用分部積分法,
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)^2lnx*x^(a 1) 2/(a 1)^2∫x^(a 1) dlnx
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)^2lnx*x^(a 1) 2/(a 1)^2∫x^(a 1) *1/xdx
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)^2lnx*x^(a 1) 2/(a 1)^2∫x^adx
=1/(a 1) (lnx)^2*x^(a 1) -2/(a 1)^2lnx*x^(a 1) 2/(a 1)^3x^(a 1) c
=x^(a 1) [(lnx)^2/(a 1) -2/(a 1)^2lnx 2/(a 1)^3] c
舉例計算,例如當a=4時,計算過程如下:
∫x^4 (lnx)^2dx
=(1/5)∫(lnx)^2dx^a11,以下第一次使用分部積分法,
=(1/5) (lnx)^2*x^5-(1/5)∫x^5d(lnx)^2
=(1/5) (lnx)^2*x^5-(2/5)∫x^5*lnx*(1/x)dx
=(1/5) (lnx)^2*x^5-(2/5)∫x^4*lnxdx
=(1/5) (lnx)^2*x^5-(2/25)∫lnxdx^5,以下第二次使用分部積分法,
=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5 (2/25)∫x^5dlnx
=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5 (2/25)∫x^5*1/xdx
=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5 (2/25)∫x^adx
=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5 (2/125)x^5 c
=x^5 [(1/5) (lnx)^2-(2/25)lnx (2/125)] c
=(1/125)x^5 [25 (lnx)^2-10lnx 2] c.
,更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!