若假設等腰直角三角形兩腰分别為a,b,底為c,則可得其面積:S=ab/2。等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等,直角邊夾亦直角銳角45,斜邊上中線垂線,頂角角平分線三線合一,等腰直角三角形斜邊上的高為外接圓的半徑R。
相關定理:
正弦定理(TheLawofSines)是三角學中的一個基本定理,它指出“在任意一個平面三角形中,各邊和它所對角的正弦值的比相等且等于外接圓的直徑”,即a/sinA=b/sinB=c/sinC=2r=D(r為外接圓半徑,D為直徑)。
餘弦定理,歐氏平面幾何學基本定理。餘弦定理是描述三角形中三邊長度與一個角的餘弦值關系的數學定理,是勾股定理在一般三角形情形下的推廣,勾股定理是餘弦定理的特例。餘弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求三角的問題,若對餘弦定理加以變形并适當移于其它知識,則使用起來更為方便、靈活。
更多精彩资讯请关注tft每日頭條,我们将持续为您更新最新资讯!